Hungary Math Olympiad | A Very Nice Geometry Problem

  Рет қаралды 4,927

Math Booster

Math Booster

Күн бұрын

Пікірлер: 20
@soli9mana-soli4953
@soli9mana-soli4953 22 күн бұрын
Considering that ODP is a 30,60,90 degree right triangle, the radius of the semicircle can be found with the equation: 6 - r = 2r
@quigonkenny
@quigonkenny 18 күн бұрын
Let P be the center of the semicircle. Draw radius PD. As OA is tangent to semicircle P at D, ∠PDO = 90. As ∠DOP = 30°, ∠OPD = 60° and ∆PDO is a 30-60-90 special right triangle. As PD = r, OP = 2r and OD = √3r. As OP = 2r and PB = r, OB = 3r. As OB = 6, r = 6/3 = 2. The shaded area is equal to the area of sector AOB minus the area of semicircle P. Shaded area: A = (θ/360°)πR² - πr²/2 A = (30°/360°)π{6²) - π(2²)/2 A = 36π/12 - 4π/2 A = 3π - 2π = π ≈ 3.14 sq units
@marioalb9726
@marioalb9726 22 күн бұрын
Angular sector: A = ½αR² = ½.30°(π/180°)6² A = 3π cm² Radius of semicircle: r = R/3 = 2cm Area of semicircle A = ½πr² = 2π cm² Shaded Area A = A₁ -A₂ = 3π -2π A = π cm² ( Solved √ )
@germanalexandru
@germanalexandru 16 күн бұрын
PDC equilateral, OCD isoscel, so a=2
@jimlocke9320
@jimlocke9320 22 күн бұрын
At 6:00, recognize that ΔODP is a special 30°-60°-90° right triangle, for which the hypotenuse is twice as long as the short side. The short side is opposite the 30° angle, so is PD and PD has length a. The hypotenuse OP is twice as long, or 2a. OB = OP + PB = 2a + a = 3a, and OB = 6, so a = 2. Skip ahead to 7:30.
@saronohandoyo4958
@saronohandoyo4958 21 күн бұрын
Let P is the center of the semicircle so BP=CP=DP = R which is radius of semicircle sin 30 = 1/2 = R/OP so OP = 2R OB = OP+PB 6 = 2R+R 3R=6 so R=2 area shaded area = areasector AOB - area semicircle =30/360*π*r*r - 1/2*π*R*R =π*6*6/12 - 2*2*π/2 =3π-2π = π
@Great-Britain2
@Great-Britain2 22 күн бұрын
Bro I swear educational things like this shoudl get way more views
@SGuerra
@SGuerra 21 күн бұрын
Uau! Que questão legal. Parabéns pela escolha. Brasil - Novembro de 2024.
@ناصريناصر-س4ب
@ناصريناصر-س4ب 22 күн бұрын
Let I be the center of the semicircle and let H be the perpendicular projection of point A on OB. According to the triangles OAH and OID, we conclude (6-r)/6=r/3, from which r=2, and from which the required area is π*6²/12-π*2²/2=π.
@michaeldoerr5810
@michaeldoerr5810 20 күн бұрын
The shaded area is pi units square. Also I think this problme would still be applicable even if the triangles are NOT special right triangles. No lie. I could wrong.
@himo3485
@himo3485 21 күн бұрын
r+2r=6 3r=6 r=2 Shaded area = 6*6*π*30/360 - 2*2*π*1/2 = 3π - 2π = π
@giuseppemalaguti435
@giuseppemalaguti435 22 күн бұрын
r/sin30+r=6..r(1+2)=6...r=2....Ablue=πR^2/12-πr^2/2..[R=3r]..=π(3/4)r^2-πr^2/2=(1/4)πr^2=π
@santiagoarosam430
@santiagoarosam430 22 күн бұрын
Si S es el centro del semicírculo→ SD=r→ SO=2r y SB=r→ OB=6=3r→ r=6/3=2→ Área sombreada =(π6²/12) - (π2²/2) =π. Gracias y un saludo.
@cyruschang1904
@cyruschang1904 17 күн бұрын
(6)(6)π x (30°/360°) - (2)(2)π/2 = 3π - 2π = π
@RealQinnMalloryu4
@RealQinnMalloryu4 22 күн бұрын
(6)^2=36{60°A+60°B+60°C}=180°ABC/36=5ABC (ABC ➖ 5PiABC+5Pi).
@AmirgabYT2185
@AmirgabYT2185 22 күн бұрын
S=π≈3,14
@yakupbuyankara5903
@yakupbuyankara5903 19 күн бұрын
3.14
@mordechaimalka
@mordechaimalka 20 күн бұрын
Excellent exercise !! Greeting from the Eternal Jewish people With a 3500 years history !!! From his Jerusalem Capital from the king David . Israel will stay for ether !!
@sakshikausal
@sakshikausal 20 күн бұрын
= [(pi*6²/6 )- pi*2² ]/2 = pi
@wasimahmad-t6c
@wasimahmad-t6c 21 күн бұрын
3×3=9×3.14159268=28.274334)(39.901122-28.274334=11.6267886÷2=5.813394
Hungary Math Olympiad | A Very Nice Geometry Problem | 2 Methods
15:38
Romania Math Olympiad | A Very Nice Geometry Problem
10:52
Math Booster
Рет қаралды 8 М.
This Game Is Wild...
00:19
MrBeast
Рет қаралды 181 МЛН
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 179 МЛН
Turn Off the Vacum And Sit Back and Laugh 🤣
00:34
SKITSFUL
Рет қаралды 6 МЛН
Poland Math Olympiad | A Very Nice Geometry Problem
11:13
Math Booster
Рет қаралды 4,4 М.
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 502 М.
How to Solve This Tricky Geometry Problem Made up of Three Circles
11:11
Russian Math Olympiad | A Very Nice Geometry Problem
14:34
Math Booster
Рет қаралды 127 М.
Can you Pass Stanford University Admission Simplification Problem ?
20:02
2 Squares 1 Semicircle
5:42
Andy Math
Рет қаралды 64 М.
This Game Is Wild...
00:19
MrBeast
Рет қаралды 181 МЛН