Out Of Bag Evaluation(OOB) And OOB Score Or Error In Random Forest

  Рет қаралды 15,106

Krish Naik

Krish Naik

Күн бұрын

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring the prediction error of random forests, boosted decision trees, and other machine learning models utilizing bootstrap aggregating (bagging). Bagging uses subsampling with replacement to create training samples for the model to learn from. OOB error is the mean prediction error on each training sample xi, using only the trees that did not have xi in their bootstrap sample
-------------------------------------------------------------------------------------------------------
Please join as a member in my channel to get additional benefits like materials in Data Science, live streaming for Members and many more
/ @krishnaik06
Please do subscribe my other channel too
/ @krishnaikhindi
Connect with me here:
Twitter: / krishnaik06
Instagram: / krishnaik06

Пікірлер: 15
@callsignkpop
@callsignkpop Жыл бұрын
You were so much more clear than any professor or any online resource I've consulted, you're amazing!!!
@graveyard8661
@graveyard8661 2 жыл бұрын
Thank you for your thorough explaination!
@michaelho5138
@michaelho5138 2 жыл бұрын
How can we be sure that after bootstrapping of the data, there will be remaining out of bag records to be used as a validating training data set? Is it not possible that you could sample all data points even with replacement when bootstrapping?
@oshinfrancistunde4455
@oshinfrancistunde4455 2 жыл бұрын
I just join ur channel Please continue posting machine learning tutorials and advice And i have review ur formal video It was awesome i like ur explaination I hope that i will learn more before joining college
@shreyasb.s3819
@shreyasb.s3819 2 жыл бұрын
I got this question in interview 1.5 years ago
@raghavendragg9709
@raghavendragg9709 2 жыл бұрын
Thank you for creating video on this topic 👍
@progamer0256
@progamer0256 2 жыл бұрын
Sir plz continue nlp lectures attention models and transformer bert
@zaafirc369
@zaafirc369 2 жыл бұрын
Should we use OOB error or accuracy from test dataset to validate random forest model?
@sreelakshmiv1072
@sreelakshmiv1072 2 жыл бұрын
guys do u tink it is a good idea to do 5 year integrated msc in datascience????
@krishnachitrak9529
@krishnachitrak9529 2 жыл бұрын
perfectly explained
@shadiyapp5552
@shadiyapp5552 Жыл бұрын
Thank you sir ♥️
@itsamankumar403
@itsamankumar403 Жыл бұрын
Thank you Sir :)
@shivam_kumar_sk
@shivam_kumar_sk 2 жыл бұрын
First comment 🎊🎊
@vijaykumbhar1657
@vijaykumbhar1657 2 жыл бұрын
sir i need ur help plz help me for this recently i join course from simplilearn course name Data scientist Job guartee programe but now i am confused tht this course is real or fruad i will get 100%job or not plz sir i want suggestion from you
Bagging and Random Forests
15:47
Leslie Myint
Рет қаралды 9 М.
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 18 МЛН
Random Forest(Bootstrap Aggregation) Easily Explained
9:18
Krish Naik
Рет қаралды 30 М.
I2ML - Random Forests - Out-of-Bag Error Estimate
12:54
Statistical Learning and Data Science
Рет қаралды 238
StatQuest: Random Forests Part 1 - Building, Using and Evaluating
9:54
StatQuest with Josh Starmer
Рет қаралды 1,2 МЛН
What is AdaBoost (BOOSTING TECHNIQUES)
14:06
Krish Naik
Рет қаралды 355 М.
Tutorial 43-Random Forest Classifier and Regressor
10:18
Krish Naik
Рет қаралды 417 М.
Machine Learning Tutorial Python - 21: Ensemble Learning - Bagging
23:37
Decision and Classification Trees, Clearly Explained!!!
18:08
StatQuest with Josh Starmer
Рет қаралды 818 М.