You sir are awesome. At first i was bad at maths in school and thought i would never understand advanced mathematics. But you and blackpenredpen inspired me to believe in maths and to have fun with it. After that i easily got A's in exams without learning much and even my teacher was impressed. Thank you for all your work :)
@blackpenredpen6 жыл бұрын
mip mip yay!!!
@0xfeedcafe6 жыл бұрын
mip mip it happened the same to me, now maths are fun for me :]
@mipmip45756 жыл бұрын
サkelov yey :)
@Soundillusions94xyz6 жыл бұрын
Watching a cute boy doing cute maths, great way to wake up on a Wednesday morning.
@gardening_vibes4 жыл бұрын
Hey can anyone explain the derivation of formula for 1/(1-x) in the last process? Ir any derivation of the Formulas link?
@alexandretlili7756 жыл бұрын
14:33 I think this formula only works when the absolute value of the argument is strictly less than one ; so you are restricting your primitive to ]-inf,0[
@jorgeramos597 Жыл бұрын
That geometric series only works for -1
@xCorvus7x6 жыл бұрын
Since cosh(x) - sinh(x) = exp(-x), this "first way" is literally the first way of the last four. To nitpick a bit more, the last method is risky since the formula you start out with only holds for |x| < 1. Interesting that a restricted way yields an unrestricted result.
@justwest6 жыл бұрын
15:17 why can we interchange it? which argument would you give? I always struggle with those
@xCorvus7x6 жыл бұрын
Der Justus You can interchange because of the linearity of the integral, you know, i. e. the integral of a sum of functions is equal to the sum of the integrals of each function. You have done that before yourself (I think), here he only uses the fancy sum sign.
@justwest6 жыл бұрын
No, that's not right respectively not enough. The limitprocess involved in the infinite sum ruins your argument.
@justwest6 жыл бұрын
I pondered and I'd have argued that by the Lebesgue-Konvergence theorem (or dominance konvergence theorem) one can interchange the limit and the integral sign since (-1)^n*e^nx is measurable since its continous, even though I am not even sure with this argument and if all conditions are fulfilled. I'd like to hear Flammables opinion or thought process behind what he stated.
@justwest6 жыл бұрын
Yea, no question it would be too much for a video. But still, as it's mathematics, those steps should be clea, arguable and understood. Anyway, which semester are you in atm, flammable? Also, I may summon BPRP's help for our concern, haha^^
@xCorvus7x6 жыл бұрын
Der Justus Please excuse my inappropriate response. Thanks for reminding me of the limit in the infinite sum.
@samuelbam37486 жыл бұрын
At the beginning u could also just multiple the top and bottom by e^(-x) and than let u = 1 + e^(-x) so that you don't have to split it in an even and odd function
@gammaknife1676 жыл бұрын
At 3:42 would it be easier to use inspection - the top is the negative differential of the bottom, so it just integrates to -ln(1+coshx - sinhx) right?
@gammaknife1676 жыл бұрын
Fair!
@injanju6 жыл бұрын
please do 1 week of putnam exam integrals hehe
@erggish6 жыл бұрын
@8:53 , that was a super cringy but funny move there XD
@curiousminds3016 жыл бұрын
Can you please solve integral from 0 to pi/2 of x^2 cos^n(x) dx please🙏🙏
@saschatrumper6 жыл бұрын
Question: Isn't (1-x)^-1 and therefore sum(x^n ; n=[0,inf)) defined for |x|0 . so the integral is defined only for x
@benjaminkachalla40626 жыл бұрын
Can you try this please. .. Limit.as n→ infinity of [ dx/(1+x²)ⁿ] the integral takes bonds from 0 to 1
@xAsadullahx6 жыл бұрын
Awesome video. Another method would be to let x=ln(u) and so dx=1/u and then use PFD. That's the way I've always solved this integral.
@kironsk0016 жыл бұрын
how integrate x³/e^x+1??
@sansamman46196 жыл бұрын
welcome back to another segment offff: daddy teach's se.. math at 2:50 can you multiply by one outside the dx that can make my life alot easier if you can i always erase the dx and put it outside...
@holyshit9226 жыл бұрын
Geometric series converges only for abs(q) < 1 then i doubt that last way will be acceptable
@barscerci97776 жыл бұрын
Is it possible to integrate 1/(1+lnx)
@barscerci97776 жыл бұрын
Flammable Maths Even with an approximation?
@sss-ol3dl6 жыл бұрын
You can absolutely find a taylors series and integrate that for an approximation, but I believe it will only be valid for 0
@holyshit9226 жыл бұрын
Ei - exponential integral
@jackvernian77796 жыл бұрын
Ma boi, could you recommend me some books on calculus+mathematical physics that you currently use and that are in english? I'm studying ME, but am really interested in physics and mathematics and it is very likely that I'll end up studying both later after I'm done with ME. Just for the reference, last "serious" mathematics course I finished in my study was Infinite Series(incl. Fourier and Taylor), Diff. Eqs., Laplace Transforms and basics of Mathematical Physics. And I'm doing statistics(basic) right now, so not exactly much is going on. Thanks!
@JDRudie-ec4xq6 жыл бұрын
why didn't you just integrate cos/sin as cot (x) in the second method?
@0xVikas6 жыл бұрын
Bro Solve iitjee advanced (entrance exam to an Indian college) questions. They are vey tough and awesome !
@cipherunity6 жыл бұрын
I wonder you never used the following formula to make your solutions simple. ∫(derivative of f(x))/(f(x)) dx = ln (f(x)) + c If you have a function in the denominator and its derivative is in the numerator, you only need to take log of the function for integration. For example in you solution ∫cosø/sinø dø = ln (sinø) + C you do not have to make substitution. Any way 4 solutions of this problems are wonderful.
@vkilgore116 жыл бұрын
Beautiful :).
@-CE-SumitKumar2 жыл бұрын
Divide numerator and denominator by e^x
@nik_semperlotti10624 жыл бұрын
How you assume e^x
@Legacies876 жыл бұрын
Awesome
@marcioamaral75116 жыл бұрын
Now that's a great video! to lift up my day I never asked, where are you from? Please 8 ways in 1/1+cos(x)
@sss-ol3dl6 жыл бұрын
Heres one way, substitute t = tan(x/2)
@DhirajKumar-rx8hi6 жыл бұрын
Please solve the Problems of IIT JEE Advanced ( Entrance Exam for IITs at undergraduate level in India).
@michaelshen4366 жыл бұрын
Brilliant tricks
@MrDenver0096 жыл бұрын
intro song please?
@MrDenver0096 жыл бұрын
it doesn't sound like it
@MrDenver0096 жыл бұрын
link?
@MrDenver0096 жыл бұрын
I found it. Thank you! Great videos by the way
@sarpkaplan44496 жыл бұрын
ı felt very differented after this vid :d
@sarpkaplan44496 жыл бұрын
i play on 2x speed
@scottwilliams76726 жыл бұрын
Excellent!
@ІгорСапунов2 жыл бұрын
1=1+exp(x)-exp(x). So, we have integral(1)-integral(exp(x)/(exp(x)+1))=x-ln(exp(x)+1)+C
@ClownEdits6 жыл бұрын
haha after trying this myself this feels very interesting
@abkoobxyoo14486 жыл бұрын
Good ideal
@michaelshen4366 жыл бұрын
To sophisticated. Just 1/(e^x+1)=1-e^x/(e^x+1), and integrating e^x/(e^x+1) is trivial.
@michaelshen4366 жыл бұрын
Sorry, I didn't watch the video on first four solutions...
@___xyz___6 жыл бұрын
boi this dφs my intuition!
@jackvernian77796 жыл бұрын
cosh and sinh: integral days
@dorianvoydie46986 жыл бұрын
Lmao why don't you just add and subtract e^x in numerator : 1 = (1+ e^x) - e^x So you get : The integral of 1.dx minus the integral of e^x over (e^x +1) dx... So : x - ln(1+e^x)
@NoNTr1v1aL6 жыл бұрын
1:16 Looks like dat boi's become a man😏
@空想天则6 жыл бұрын
why not let u=e^x+1 ,it's much easier.
@空想天则6 жыл бұрын
alright then...I like your videos:)
@空想天则6 жыл бұрын
ok, I know. By the way, why are you so interested in solving these integrations?I mean I know it's interesting to use different methods to solve these problems,but does these technics or ideas really help you in your everyday work?
@timothyaugustine70936 жыл бұрын
空想天则 Lol, obviously not if you're not working in math field or studying math but that's not the point.
@gammaknife1676 жыл бұрын
SINCH XDDD Are you purposely shunning its proper pronunciation of shine?
@gammaknife1676 жыл бұрын
Every time you say cinch, a puppy dies.
@user-pn9zm8qg7k6 жыл бұрын
Noice!
@yxlxfxf6 жыл бұрын
integrate (ln x)^2018/(x+1) from 1/e to e
@JB-in4dj6 жыл бұрын
You are cool.
@jeffzheng1913 Жыл бұрын
This method is too complicated. dx/(1+exp(x)) = exp(-x) dx/(1+exp(-x)) = -d(exp(-x))/(1+exp(-x)), so integral result is -In(1+exp(-x))= x - ln(1+exp(x))