When exactly did i start watching integral solving recreationally?
@micomrkaic5 жыл бұрын
I’m asking myself the same question:)
@thomaslopez83954 жыл бұрын
It’s weirder when you’re not even majoring in mathematics
@user-fungus4 жыл бұрын
It's much weird when you're still in high school 🤣
@manamritsingh9693 жыл бұрын
@@user-fungus relatable
@Nothingtonnobodson3 жыл бұрын
@@micomrkaic same here
@SteamPunkLV6 жыл бұрын
at this point the product function is just used for ridiculous questions such as these
@NoNTr1v1aL6 жыл бұрын
0:28 Oh shit... he's onto us.
@blazep58816 жыл бұрын
Classic German humor at the start
@dylantellez17586 жыл бұрын
Oi, this is german humor. It's no laughing matter
@AlexiLaiho2276 жыл бұрын
i pictured a burned hotdog when i thought of the phrase "infinite tan boi"
@blueberrypoptart24246 жыл бұрын
Such a beautiful infinity sign 4:30
@oliverinspace92526 жыл бұрын
Why not use the identity 1-tan^2(x) = 2tanx/tan(2x) instead? This simplifies the product directly to ∫(1/x) lim(2^i * tan(x/2^i)/tan x) dx which can also be evaluated using l'H rule in the same way as shown in the video.
@fengshengqin69935 жыл бұрын
Yeah,I have used this way ! Great .
@desertrainfrog16912 жыл бұрын
I'd guess he didn't think of it and decided to pursue the solution he thought of instead.
@madgodyt23912 жыл бұрын
i did with the same approch !! and yeah the product term becomes much simpler .
@decreasing_entropy30032 жыл бұрын
Because I didn't remember this identity.
@cupcakesandrose6 жыл бұрын
"Cute twink." Suddenly the channel name makes sense.
@IlTrojo6 жыл бұрын
Very interesting as always. Just one little thing: at about 8:00 you ought to have also shifted from k to k-1 on top of the big pi - no harm done as you were going to take a limit soon afterwards, but it could have cost you the loss of some constant. Cheers!
@glukhas5 жыл бұрын
Es ist immer wieder spannend, deine Videos bei KZbin anzusehen... Danke sehr, Schnuckel-Mathematiker! und Grüße aus Brasilien :)
@ezioauditore73786 жыл бұрын
Dude, I'm 16 and even don't understanding a thing on this video, just basic trigonometry, I got surprised because this seems impossible for me to solve but you nailed it so easy. Hope I can get to this level some day.
@Vibranium3753 жыл бұрын
Bro u just need a bit of practice, hard work and a bit of interest. It has been 3 years so I think seeing ur passion you might already have reached this level.
@ezioauditore73783 жыл бұрын
@@Vibranium375 wow, I didn't even remember this comment. And yeah, I've improved so much since then, not so much in Calculus, but in math in general I did. Thanks for the words
@maalikserebryakov Жыл бұрын
@@ezioauditore7378 1 year later, how’s your calculus skill? particularly your ability in the symbolic evaluation of integrals
@echopotato5 жыл бұрын
8:29 "... ONE THING I DONT KNOW WHY IT DOESN'T EVEN MATTER HOW HARD YOU TRY"
@achalanand22133 жыл бұрын
Take a simple math problem keep multiplying and dividing by same quantity and then use some properties to expand them, - tadaaaa - a mind bending math problem .
@tomsxe6 жыл бұрын
I hope no one has removed their headphones after they've heard "if you want to support me a bit more, take a look ..." at 17:52 when you pointed down
@NotLegato6 жыл бұрын
about the pythagorean identities: you can derive them all from the unit circle by drawing a triangle with all the trig functions on it and so you won't have to memorise as much.
@hopethisnameisntok5 жыл бұрын
VERY NICE! I really enjoy. Its great for when you leave uni and start working with something that does not involve pure maths. 7:54 don't forget the upper limit, the last term should be for x/2^k-1 altough it makes it all much more smooth as you did and in the limit nothing matters
@hunghinsun21236 жыл бұрын
At 13:12, instead of using L'Hôpital's rule, actually you can simply use the standard result of the limit of sin(x)/x being equal to 1 as x tends to 0.
@impossiblemission4ce5 жыл бұрын
I had a lot of fun doing this one. I'm horrible at trigonometry, so I made a cheat sheet starting with Euler's formula and going from there, deriving another form of tan^2(x) and the double angle formulas and such. I think I'll have to keep this question ready, for a long trip.
@joeyazbeck8496 жыл бұрын
Could ur titles and intros get any cringier? Love the math skillz tho
@soyvjdexter6 жыл бұрын
The intros are hilarious. Cringy but hilarious
@alexcollins99835 жыл бұрын
You could also use the double angle tan formula to get a telescoping product.
@Phi16180336 жыл бұрын
"That was quite easy." If you say so.
@paulg4445 жыл бұрын
Friends, if you dont love him and his parents, then see your cardiologist because you dont have a heart !!
@AFIyingKiwi6 жыл бұрын
At 3:23, why didn't you directly turn 2cos^2(a) - 1 into cos(2a) since that also is a double angle formula for cosine.
@affrokilla6 жыл бұрын
Love your videos, always explained very well. I would like to see some maths involving machine learning (solving Support Vector Machine and gradient descent for example)
@mijoo56855 жыл бұрын
En el minuto 13:30, por qué se puede usar L’Hôpital si k es una variable no continua? Osea, k es un número natural... en ese caso no se podría derivar o si me equivoco entonces por qué se podría?
@williamtachyon26306 жыл бұрын
”Infinity boy.”
@gregoriousmaths2664 жыл бұрын
William Tachyon *boi
@kono152 Жыл бұрын
crystal clear explanation, though i wish you calculated the second product too since that result kinda confused me, but ill go ahead and do it myself
@tomvanmoer82026 жыл бұрын
"Boi", always cracks me up xD
@omarifady6 жыл бұрын
You forgot to put absolute value around sin(x) when integrating cot(x) :D
@RkMrn1016 жыл бұрын
i love this guy
@FitR_MusicProductions6 жыл бұрын
7:05 , “so working with finite things is way easier than working with infinite things” huh coulda fooled me.
@justwest6 жыл бұрын
wow, beautiful trigonometry right there!
@poutineausyropderable71084 жыл бұрын
I have a feeling a bunch of clever tricks will be used.
@nicolasbaghdassarian21196 жыл бұрын
Beautiful proof ! I love maths and the way you explain it !
@sergioh55156 жыл бұрын
Just finished the video. What an elegant solution. Thank you! :D
Imagine seeing a problem/solution with this in reverse... [Part way way through] So we now have cot(x) in our expression. We can’t use it as such, but a product representation might work. Recall from your notes that cot(x) == 1/x *prod[k=1,inf](1-tan^2(x/2^k)) From this it is obvious that....
@jemcel03976 жыл бұрын
Spicy integral evaluates to a simple function. Damn clever boi
@neutrino56955 жыл бұрын
I had to search for the definition of twink in the urban dictionary:)) Great video by the way.
@thomasblackwell95075 жыл бұрын
I appreciate your accent it makes it more agreeable and acceptable. Please forgive me for being a Deuschverderber.
@aniketeuler64433 жыл бұрын
Flammy Jens what's the name of the music in the beginning of video
@UrasSomer5 жыл бұрын
This madman still reads the comments on this
@nashweekendcovers4 жыл бұрын
"seek n square" flammy says.😂
@noway28314 жыл бұрын
I lost you when you stated talking about "telescopic functions", but that's likely attributable to my limited education.
@yvesdesille786 жыл бұрын
Why did you change your i into a k at 5:44 ?
@sibsbubbles5 жыл бұрын
Wow that was quite the knarly integral. You know your trig super well, man.
@shivanshnigam4015 Жыл бұрын
We ain't callin em functions here we call em Bois 💀
@ryderpham54646 жыл бұрын
You read my mind; I do only come for the cute twink
@almanahulzilnicdesuceava53796 жыл бұрын
12:00 you could use instead LIM (sin f(x))/f (x) = 1 f (x)->0
@almanahulzilnicdesuceava53796 жыл бұрын
But it.s in the special limits list!
@almanahulzilnicdesuceava53796 жыл бұрын
My maths teacher,aparently :)))
@Bollibompa5 жыл бұрын
Why can we use L'Hôpital's when the values k take are discrete? Shouldn't we use Stolz-Cesàro? I remember pondering this when deriving sinc(x) from the infinite product of cos(x/2^n). On the other hand I can't find a case where expanding from discrete to continuous would be a problem unless the argument is quite nasty.
@subhadeepsarkar56064 жыл бұрын
that's a damn to be given
@alielhajj77692 жыл бұрын
Splitting the infinite product needs some conditions man
@RaspingBubbles66 жыл бұрын
Can you find the area between the functions sqrt(X) and ln(X + 1) + 1 from 0 to their intercept
@RaspingBubbles66 жыл бұрын
Please
@nicholasheilig36944 жыл бұрын
Amazing! I love you flammy boi! Keep it up.
@omgopet6 жыл бұрын
14:00 you can make your life much easier by using the Taylor series expansion for limits like these.
@bimbumbamdolievori2 жыл бұрын
I wonder if these big integrals are constructed by reverse process or if you can really figure out such amount of steps
@alexschiffer62376 жыл бұрын
Calculus and a cute twink what an amazing combination.
@jc83845 жыл бұрын
Alex Schiffer I thought he is straight? I’m confused
@jc83845 жыл бұрын
Flammable Maths you are cute though and clearly smart so anybody would be lucky with you lol
@maalikserebryakov Жыл бұрын
there is an illness in your mind
@janderson27096 жыл бұрын
14:46 'don't forget the x from before' Which x? From where?
@domenicopiegaia78166 жыл бұрын
this was my first papa flammy video ever
@Rotiiii986 жыл бұрын
When you moved the index on that product form 2 to 1 should you haved to move the index on k too? from k to k+1?
@Jeff-wc5ho6 жыл бұрын
This reminds me of an old MIT Integration bee problem
@colorfulcalculus45266 жыл бұрын
Incredible video! Love it!
@mihaiciorobitca52876 жыл бұрын
What means those 3 points ,from 2:15
@aniruddhvasishta83344 жыл бұрын
At 6:06 he says the product of the two infinity bois are reciprocals so why can't he cancel out the infinite cosine boi with one of the infinite secant bois?
@nujabraska2 жыл бұрын
Telescoping series was pretty cool
@immersionmusic5 жыл бұрын
Papa Flammy this ist a sehry neiß Koßein formula. Very gut
@ericthegreat78056 жыл бұрын
Great video, but in my calculus class i was taught an easier way to do limcos(x)sin(x)(1/2k)/(sin(x/2k)) = 1/x * cos(x)*sin(x)* lim(x/2k)/sin(x/2k). Now we know sin(a)/a -> 1 as a -> 0 which does if a = x/2^k, so the limit is just cos(x)sin(x)/x.
@brayancantero5 жыл бұрын
Hello, do you explain the change from cartesian to polar coordinates in Gaussian Integral? It's very important. Thanks. Like, explain how to obtain rdrd(theta) from dxdy, thanks.
@karljoyeux51484 жыл бұрын
"that was quite easy"
@yasuotheunforgiven28396 жыл бұрын
keep it up from morocco
@Joe-bb4yi2 жыл бұрын
2cos^2(a)-1 is also cos(2a)
@faithhill98113 жыл бұрын
Is anyone able to tell me where he got this integral from??
@sleindarfeau86576 жыл бұрын
Great one boi ! I just wonder why you didn't use the fact that sin(x/2^k)~x/2^k when k->oo which would have given you the 1/x limit quickier that with L'hôpital's rule
@itsanotheraccount5 жыл бұрын
**calls himself twink** Most bestest calculus video maker
@clementboutaric39525 жыл бұрын
This was not deep math but trig skill. Both of which are enjoyable.
@daemonguy26 жыл бұрын
What so now we can log negative values?
@razimograbi21356 жыл бұрын
good job man love ur videos , i learn i lot from u.
@chuayewhui1456 жыл бұрын
Short boi disguise as long boi
@CreativeStyled6 жыл бұрын
This channel is so gooooodd.
@ranjitsarkar31263 жыл бұрын
Back in the day when his handwriting was still understandable
@pranavva54186 жыл бұрын
This was beautifulll
@soyoltoi6 жыл бұрын
I hyper love my infinite boiis.
@teekayanirudh6 жыл бұрын
First 40 seconds earned my like. That aside brilliant video ;)
@mokouf35 жыл бұрын
Wait...cosine * secant = 1 isn't it? When you did make lim(n→∞)Π(i=1 to n)cos(x/2^(i-1)) = cos(x)*lim(n→∞)Π(i=1 to n)cos(x/2^(i)) Note that you have cos(x) *Πcos(x/2^i) * [Πsec(x/2^i)]^2, isn't it cos(x)*Πsec(x/2^i) ?
@mokouf34 жыл бұрын
You forgot to take absolute value at last!
@hallowizer4405 жыл бұрын
17:34 Wait...ln(u) = ln(sin(x))+C? That means C=0, so every arbitrary constant was always equal to 0!
@xFamous246 жыл бұрын
Where can you get problems like this? I would love to solve some of these trick integrals. Do you have a specific source? Danke schonmal :)
@darmstadtbeste45906 жыл бұрын
this is so beautiful
@anmolempire11975 жыл бұрын
Nice one 😊
@PandaWaffle36 жыл бұрын
Do more Putnam problems!!!!
@curiousminds3016 жыл бұрын
Amazing video sir
@bluebears66276 жыл бұрын
I always fall for that too but you missed the absolute value on the ln when integrating the final thing
@lasa182 жыл бұрын
Hey math guy prove this: Every Irrational number can be written as a ratio between two p-adic numbers
@theopapa82326 жыл бұрын
Isnt this an integrak from the integration bee at mit?
@joshuabonet3 жыл бұрын
This was a fucking amazing integral boi
@PapaFlammy693 жыл бұрын
@joshuabonet3 жыл бұрын
@@PapaFlammy69
@michaelempeigne35196 жыл бұрын
what are some properties of pi notation to compute values ?
@copperfield426 жыл бұрын
Michael Empeigne basically same as multiplication, because is just a notation for multiplying many stuff following a certain pattern just like the sigma notation for summation/addition
@adrianamor84726 жыл бұрын
Instead of using L'H rule you could just use the fact that lim x->0 x/sin(ax) = 1/a to prove that lim k->inf 2^-k / sin(x*2^-k) = 1/x . You don't even have to calculate derivatives :)
@thomasdevos45906 жыл бұрын
there is a mutch eazier way using dubbel angle formula of the tangent