Papa Fibonacci using Linear Algebra [ Recurrence Relations and Diagonalization ]

  Рет қаралды 40,375

Flammable Maths

Flammable Maths

Күн бұрын

Пікірлер: 161
@bjoernschermbach3957
@bjoernschermbach3957 6 жыл бұрын
1) Papa Flammy, why do you keep misspelling Fiboinacci? ;) 2) 14:22 Eulergeddon best apocalypse! 3) I'd say 'so good' but I fear the BPRP revenge... 4) Can I call you Thomas Godchalk instead?
@blazep5881
@blazep5881 6 жыл бұрын
Flammable Maths stick to papa, daddy just sounds... Weird
@46pi26
@46pi26 6 жыл бұрын
masterbaiter blaze dude my brother's name is Blaize (yes, with an i), and we would always call him the master baiter when we went fishing. What a coincidence!
@dalitas
@dalitas 6 жыл бұрын
You might not be the smartest boi but you are the flammiest
@mishikookropiridze
@mishikookropiridze 6 жыл бұрын
Papa fibonacci, linear algebra and cringe jokes ?! I am in heaven.
@kgeorge7153
@kgeorge7153 6 жыл бұрын
seeing "linear algebra" in the title -> instant like
@rohitg1529
@rohitg1529 6 жыл бұрын
You're the only maths youtuber who goes at the perfect speed. Once your video is on 2x, I never need to pause to understand what you write, nor do I need to fast forward to see the next step.
@youurdream182
@youurdream182 6 жыл бұрын
Nice to see the content of lectures I’ve went through becoming a meme 😂
@youurdream182
@youurdream182 6 жыл бұрын
Flammable Maths, keep the spiciness up boi; love your vids papa ;*
@robinros2595
@robinros2595 6 жыл бұрын
Nice! A small side-note: If you write T = S^(-1)AS, what you're actually doing is transforming your original space onto the column-vectors of S, performing A on that and then transforming back to the original space with base (1,0), (0,1). If you choose S to have eigenvectors of A for it's columns, you are actually performing the transformation of A on its own eigenvectors, so that's just multiplying the eigenvectors with their corresponding eigenvalues. So it's no surprise at all that T has the eigenvalues of A on its diagonal: this always happens (when A is diagonalisable). Hard to explain this over text, but when you see S and S^(-1) as transformation matrices it becomes totally clear that T should be a diagonal matrix and contains the eigenvalues of A :) Keep up the good memes :)
@kgeorge7153
@kgeorge7153 6 жыл бұрын
Also it is not too hard to come up with the eigendecomposition one your own being exposed to the proper definition of a matrix-matrix multiplication: matrix on the left acting like a transformation on each column of the matrix on the right (then consider the matrix A times the matrix of its eigenvectors, and guess what's on the RHS). 3b1b did a great job explaining it, and it is probably the most crucial idea of the whole linear algebra, this makes everything reasonable, not artificial/coincidental.
@kgeorge7153
@kgeorge7153 6 жыл бұрын
or may be not whole LA, but at least all decomposition problems -_-
@damiandassen7763
@damiandassen7763 6 жыл бұрын
17:58 nice one "same spiel here"
@ChrisLuigiTails
@ChrisLuigiTails 6 жыл бұрын
0:45 - That's exactly what I said to my mother this morning! My parents discovered Fiboinacci last week and kept harassing me all week saying it's everywhere in nature
@mathman6156
@mathman6156 6 жыл бұрын
I've just finished the first year of maths, and I'm loving the content you create, keep going!
@maxwibert
@maxwibert 6 жыл бұрын
You can also check that phi conjugate is -1/phi, in which case the expression @23:36 simplifies to (phi^(n+1) - 1/phi^(n+1))/(phi^n - 1/phi^n). Because phi > 1, we have 1/phi^n approaches zero as n approaches infinity, so the fractional expression approaches phi^(n+1)/phi^n = phi.
@omega_sine
@omega_sine 6 жыл бұрын
Another great video Papa Flammy. These videos are a great way to start off my morning.
@sarthakchaudhary4375
@sarthakchaudhary4375 2 жыл бұрын
It's been 4 years and this is still the best video for this topic :)
@deeptochatterjee532
@deeptochatterjee532 6 жыл бұрын
I saw your transformation matrix, and did the quick eigenvalue calculation in my head and instantly recognized the golden ratio equation. This is too good
@noahholmes
@noahholmes 6 жыл бұрын
father of math, my golden papa
@cameodamaneo
@cameodamaneo 6 жыл бұрын
I love the mini golden boi. I find him to be as useful as the popular golden boi a lot of the time.
@46pi26
@46pi26 6 жыл бұрын
Cameron Pearce I'm gonna start calling phi "Golden boi" from now on because of this comment
@alexeipisacane7781
@alexeipisacane7781 6 жыл бұрын
Best video so far
@Adam-lx3mt
@Adam-lx3mt 6 жыл бұрын
Alternatively, you can just seek a solution of the form F_n = a*phi^n for some phi. Thus phi must satisfy phi^(n+2)=phi^(n+1)+phi^n from the Fibonacci relation. Dividing through by phi^n and solving the quadratic gives us two solutions phi1 = (1+sqrt(5))/2 and phi2 = (1-sqrt(5))/2. Since both phi1 and phi2 satisfy the Fibonacci relation we can could express F_n as a linear combination of the two. So F_n = a*phi1^n + b*phi2^n. Finally, we note that phi1=-1/phi2 and use the boundary conditions F_0=0, F_1=1 to give a and b. This proof is quite a lot shorter and easier.
@Dimiranger
@Dimiranger 6 жыл бұрын
Everything strung wonderfully together, really good video!
@francescoburgaletta3746
@francescoburgaletta3746 6 жыл бұрын
Great! I'm finishing the exams for my first year and i just had the Linear Algebra one this february. To be honest i didn't like the subject and i still don't now, but it's somehow fascinating the perfectly coherent method used to solve many problems.
@Arycke
@Arycke 6 жыл бұрын
Awesome video. I love that the phi is independent of the initial integer conditions of 0 and 1 or 1 and 1 ( I guess so long as it's not 0 and 0) as most typically know from grade school. Great moves Papa Flammy, keep it up, proud of you :3
@gamma_dablam
@gamma_dablam 5 жыл бұрын
Well ... it’s good that we don’t have Phi dependents here as we all know from Andrew’s channel how annoying those are
@michaelempeigne3519
@michaelempeigne3519 6 жыл бұрын
This is great video about linear algebra and diagonalization. Until this day, I had no idea of how diagonalization was useful or how it worked.
@adamcummings20
@adamcummings20 6 жыл бұрын
I've started learning matrices in school so now I can finally understand this video. Epic
@tajpa100
@tajpa100 2 жыл бұрын
Thank you for your wonderful lectures.
@PapaFlammy69
@PapaFlammy69 2 жыл бұрын
@winterrain870
@winterrain870 4 жыл бұрын
Looks like Pell's Equations; And the matrix treatment was superb.
@DiogoSantos-dw4ld
@DiogoSantos-dw4ld 6 жыл бұрын
Great video! I've done diagonalisation of matrices in my course but never seen why they're that useful but with the cancelling of the eigenvalues vector it makes so much sense! Usually though when constructing the S matrix I've been told to take the normalised eigenvectors, since you didn't do it I'm guessing it's just used to clean up S and S-transpose/inverse
@noahgeller7018
@noahgeller7018 6 жыл бұрын
"phi's little brother" I love 3blue1brown too
@i_deepeshmeena
@i_deepeshmeena 6 жыл бұрын
honestly a very informative video
@MePatrick73
@MePatrick73 2 жыл бұрын
Wow! I'm taking discrete math and we're learning how to solve linear homogeneous recurrence relations. We were only told to let an=r^n, find the characteristic polynomial, solve for the roots and then take a linear combinations to find the specifics values of the coefficients. This make so much sense now. Linear algebra in disguise xD !
@TheNachoesuncapo
@TheNachoesuncapo 6 жыл бұрын
this is going directy to my favs! great work men! really appreciate your work...
@housamkak646
@housamkak646 6 жыл бұрын
That was an awesome video i wish u explain the linear algebra from zero
@keroleswael9332
@keroleswael9332 6 жыл бұрын
Papa flammy destroying pure mathematics. Continue like this and prove more problems
@holyshit922
@holyshit922 5 жыл бұрын
I like Papa Fibonacci with series But this approach is nice if we look for analogous to differential equation way There is also variation of parameters for difference equation You have Casoratian instead of Wronskian and summation instead of integration Homogeneous part can be written as system of equations and solved as you showed
@mevnesldau8408
@mevnesldau8408 6 жыл бұрын
Are you reading my minds? I LOVE linear algebra!
@raph9054
@raph9054 6 жыл бұрын
Papa is the best
@jlue2051
@jlue2051 5 жыл бұрын
thank you gins i really enjoyed this one
@46pi26
@46pi26 6 жыл бұрын
Papa Flammy vs. 3b1b Who would win?
@46pi26
@46pi26 6 жыл бұрын
Flammable Maths He has transcended the realm of Papas and is now a Daddy Holy shit
@ゾカリクゾ
@ゾカリクゾ 6 жыл бұрын
very interesting approach indeed
@lucashunter6441
@lucashunter6441 Жыл бұрын
Wow a Papa Flammy question that actually showed up on one of my hw assignments
@Blacksun88marco
@Blacksun88marco 6 жыл бұрын
0:42 TRIGGERED
@jamieee472
@jamieee472 6 жыл бұрын
Wonderful Video!
@emmanuelontiveros8446
@emmanuelontiveros8446 6 жыл бұрын
Both eigenvalues are the golden ratio
@TheGarfield1337
@TheGarfield1337 6 жыл бұрын
Im ersten Semester hat unser Prof. in der ersten LinA1- Vorlesung einfach nur aus Jux eine Herleitung für die Fibonnaci-Formel gezeigt, für die man keine Vorkenntnisse braucht. In der letzten Vorlesung hat er dann quasi den Kreis geschlossen und zum Schluss diese Herleitung gezeigt, um nochmal zu komprimieren, was wir gelernt haben. Fand ich mega cool damals als kleiner Erstsemester :D
@cameodamaneo
@cameodamaneo 6 жыл бұрын
It's called the "Identity Matrix", my broski and we over here in New Zealand notate it as "I".
@cameodamaneo
@cameodamaneo 6 жыл бұрын
Oh wow. I guess I'm not a very intentive boi.
@owenmatwe2272
@owenmatwe2272 2 жыл бұрын
What a legend.
@andrijauhari8566
@andrijauhari8566 6 жыл бұрын
Thanks papa flammy :)
@ゾカリクゾ
@ゾカリクゾ 6 жыл бұрын
LOL dat euler at 14:30!! Definetely not expecting that
@CreativeStyled
@CreativeStyled 6 жыл бұрын
This was so good.
@sabhierules1
@sabhierules1 6 жыл бұрын
I call it the Identity Matrix or a matrix of the standard vectors. 9:38.
@fabiothezhao5518
@fabiothezhao5518 Жыл бұрын
Damn Papa Flammy saved my ass on a discrete math problem that my instructor suggested (was abt finding a pseudo code (only integer operations allowed) for something with a structure similar to Fibonacci). Srs thanks!
@nicholasleclerc1583
@nicholasleclerc1583 6 жыл бұрын
I’m a pure math fan/geek, but I never really realized ‘till today how potent an useful Linear Algebra can be for just about freaking anything; and it made me feel like linear algebra was.... useful... Ywah, Ik, that doesn’t really sound pure math enthusiasm but more like Utilitarian blasé-ness, but I just never found *any* use better or on par ideas like calculus for some problems; I’ve even seen twice now, around a loooong interval of time and a long time ago too, a BlackPenRedPen video where a guest used linear algebra to solve a deeply complicated integral (calculus ITSELF was helped by this); a 2nd example of pure mathematics given a hand right here !
@12346sandy1
@12346sandy1 6 жыл бұрын
Love ur videos,keep it up!
@twakilon
@twakilon 5 жыл бұрын
I actually had to learn how to solve these type of problems for my Linear Algebrs course.
@0707andy
@0707andy 6 жыл бұрын
Oh yes, the O(logn) fibonacci is the best kind of fibonacci.
@damianbuzon8119
@damianbuzon8119 4 жыл бұрын
I love fibonacci .
@xCorvus7x
@xCorvus7x 6 жыл бұрын
Beautiful.
@fandeslyc
@fandeslyc 6 жыл бұрын
Thanks ! Until now, i've never understood why there was a polynome
@leif1075
@leif1075 5 жыл бұрын
Why didbt You use FOIL Methid or quadratic formula at 8:50?
@sujanbhakat1199
@sujanbhakat1199 4 жыл бұрын
Thank you
@Applefarmery
@Applefarmery 6 жыл бұрын
Lol i actually had this same exact problem in maths at the time this was uploaded
@stenzenneznets
@stenzenneznets 6 жыл бұрын
Very nice
@townsoncocke1670
@townsoncocke1670 5 жыл бұрын
Forgive me for missing the reference in the video, but at 16:15 you replace two elements in the matrix with zeros saying those were our conditions for phi and phi conjugate. Could you refer me to when you explained those conditions for phi and phi conjugate that allowed that "substitution" (if that's the right word)? As this video is over a year old, this probably won't get a read, so I'll probably just end up calculating those elements to make sure they're zero. Anyway, great video! Thanks.
@ortollj4591
@ortollj4591 5 жыл бұрын
Hi Townson Cocke I did an other example with a 4x4 matrix , clik on the blue link on my comment
@duncanw9901
@duncanw9901 6 жыл бұрын
I have to admit my linear algebra computation ability is not exactly the best, I seem to have fallen into a strange gap between American schools teaching it in algebra 2/precalculus and not teaching it. Learned how to do it from your video though.
@pappaflammyboi5799
@pappaflammyboi5799 2 жыл бұрын
I'm a Flammy Boi fan.
@midaskeijzer7107
@midaskeijzer7107 6 жыл бұрын
Next: integral of 1/(x+cos(x))? (or shouldn't give integral requests on non-integral video's?)
@masteryoda1748
@masteryoda1748 6 жыл бұрын
C:90
@user-pn9zm8qg7k
@user-pn9zm8qg7k 6 жыл бұрын
talking to a camera for a long time must be quiet a work, a good demonstration of diagonalization.
@WhiterockFTP
@WhiterockFTP 6 жыл бұрын
@17:57 Same Spiel hier :D
@phileasmahuzier6713
@phileasmahuzier6713 2 жыл бұрын
So cool!
@hassnataha9593
@hassnataha9593 4 жыл бұрын
If you want, can you explain Zeilberger's creative telescoping algorithm for definite hypergeometric sum, pleeeeeeeeeeeease
@anon7692
@anon7692 6 жыл бұрын
@ 2:07 "so it would be nice to work with some kind of matrix or vector" Is that ever nice?
@anon7692
@anon7692 6 жыл бұрын
i0.kym-cdn.com/entries/icons/original/000/023/021/e02e5ffb5f980cd8262cf7f0ae00a4a9_press-x-to-doubt-memes-memesuper-la-noire-doubt-meme_419-238.png
@TheTim466
@TheTim466 6 жыл бұрын
1 - sqrt(5) I don' know if it's negative :thinking: ;)
@HighInquisitorBonobotheGreat
@HighInquisitorBonobotheGreat 6 жыл бұрын
19:15 That look xD "ye boi ezy huh?"
@koenth2359
@koenth2359 6 жыл бұрын
That was great and funny.
@mohammedrahman9739
@mohammedrahman9739 5 жыл бұрын
Hi I am a math teacher in University of Garmian in Kalar a small part of the Kurdistan Region-Iraq. And I have a one problem [ Let a and b be two real number such that a
@mohammedrahman9739
@mohammedrahman9739 5 жыл бұрын
@@PapaFlammy69 thanks its a good idea . thanks for your attention
@azlanjor5019
@azlanjor5019 6 жыл бұрын
👏lit mafs
@blazep5881
@blazep5881 6 жыл бұрын
you're trying hard to bring smoke Memes back. Cool
@youngsandwich9967
@youngsandwich9967 5 жыл бұрын
Could you do this with the natural log Fibonacci product like thing (each number in the sequence is the product of the preceding 2 numbers)
@gammaknife167
@gammaknife167 6 жыл бұрын
I'm sure many other people will tell you this too - it's the identity matrix. Loving this week, especially this one!
@GreenMeansGOF
@GreenMeansGOF 6 жыл бұрын
It’s usually denoted by capital i with a subcript of n where n is the size of the matrix(2x2, 3x3,...). P.S. I hate it that capital i looks like lowercase L.
@deeptochatterjee532
@deeptochatterjee532 6 жыл бұрын
Isn't the diagonalized matrix in general just the eigenvalues on the diagonal?
@almightyhydra
@almightyhydra 6 жыл бұрын
Well, you assumed the fact that S is (v1 v2), so I think it's also fine to assume T is [e1 0; 0 e2]. They go together really. If you wanted to prove that you should have done the whole proof of the P^-1AP = D diagonalization process. ^_^
@maxblack493
@maxblack493 5 жыл бұрын
Salute.
@shawon265
@shawon265 3 жыл бұрын
I appreciate what you did, but all the calculation is a little bit frustrating to me. That's why I never like Linear Algebra in my Engineering undergrad life. But thanks to 3b1b’s visualization techniques, I could tell you the diagonalized matrix right after you figured out the eigenvalues. Basically T is describing the same A matrix but in eigenbasis. So, the diagonal elements must be the eigen values indicating the scaling factor.
@thegrb93
@thegrb93 6 жыл бұрын
Can the same be done with the Mandelbrot set's recurrence relation?
@cameodamaneo
@cameodamaneo 6 жыл бұрын
2:23 Please commit to your jokes in the future thanks.
@The2bdkid
@The2bdkid 5 жыл бұрын
In diagonalization, the T is by definition the eigenvalues on the diagonal, right? That's how I was taught at least.
@GhostyOcean
@GhostyOcean 6 жыл бұрын
Hehe, "tongue twister" became "tongue breaker"
@GhostyOcean
@GhostyOcean 6 жыл бұрын
Flammable Maths tongue breaker makes more sense to me, also more fun to say
@ChrisLuigiTails
@ChrisLuigiTails 6 жыл бұрын
That's because in Germany they say "Große Kartoffel" and it litterally translates to "tongue breaker" and I think that's beautiful
@janlange6416
@janlange6416 4 жыл бұрын
@@ChrisLuigiTails omfg lololol
@SugarBeetMC
@SugarBeetMC 4 жыл бұрын
13:10 Dat S.
@thomasblackwell9507
@thomasblackwell9507 5 жыл бұрын
I thought that this was going to be about linear algebra. Herr Professor Papa Flammy all I can say is “NICHT SHIZEN!” You say you are stupid, I would hate to think of an evil smart you!
@WoWSchockadin
@WoWSchockadin 6 жыл бұрын
So as Fibonacci is short for Filius Bonacci, which means son of Bonacci will the son cancel out with the papa and leave: Papa Fibonacci = Bonacci? :-D
@MuitaMerdaAoVivo
@MuitaMerdaAoVivo 6 жыл бұрын
Papa, you're the best! Love your channel!
@ThePron8
@ThePron8 6 жыл бұрын
just one question: why didn''t you simply wrote T when you evaluated the eigvalues? I mean, the diagonal matrix expressed in terms of the eigvectors basis is (for construction) the matrix with the eigvalues on the diag, then maybe you wasted a lot of work 😂
@thechannelofeandmx4784
@thechannelofeandmx4784 6 жыл бұрын
Papa flammy, can you integrate mah boi here? sin(2pi*sqrt(1-x^2))
@peterdriscoll4070
@peterdriscoll4070 5 жыл бұрын
Yeah. Complicated way of getting this result. But cool. phi to the power of n is a solution of the recurrence relation.
@almightyhydra
@almightyhydra 6 жыл бұрын
7:18 "chi" is pronounced "kai" (hard K sound and rhymes with "pie"). Also, the identity matrix is more commonly denoted as I rather than the "blackboard" 1.
@bamdadshamaei1415
@bamdadshamaei1415 6 жыл бұрын
What does pre record mean?
@matteodamiano6733
@matteodamiano6733 6 жыл бұрын
Papa Lucas when
@46pi26
@46pi26 6 жыл бұрын
Anyone who loves Papa Fibonacci needs to check out the song Lateralus. Also Papa Flammy>Papa Fibonacci
@46pi26
@46pi26 6 жыл бұрын
No songs for Papa Flammy tho :/
@cameodamaneo
@cameodamaneo 6 жыл бұрын
I hate the shoehorned mathematics in that song. The lyrics are pretty good though.
@46pi26
@46pi26 6 жыл бұрын
Cameron Pearce Yeah Maynard himself said he regretted it but I personally really like the riffs. Not because I'm a sheep and believe they somehow spiritually resonate with me, just because it sounds pretty badass.
@46pi26
@46pi26 6 жыл бұрын
Flammable Maths I think you forgot to apply the negative signs at some point after the Papa operator. It's actually Papa Flammy>Papa 46&pi
@elfaroukharb3979
@elfaroukharb3979 6 жыл бұрын
Papaaaa
@thedoublehelix5661
@thedoublehelix5661 5 жыл бұрын
Wow
@gnikola2013
@gnikola2013 6 жыл бұрын
0:34 Papa? Is that you? PAPA Y U NO PAY ATTENSHONE TO ME
A Problem of a *Difference* kind! Recursion goes Linear Algebra
12:20
Flammable Maths
Рет қаралды 10 М.
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 37 МЛН
One day.. 🙌
00:33
Celine Dept
Рет қаралды 65 МЛН
Binet's Formula using Linear Algebra | Fibonacci Matrix
11:45
Creative Math Problems
Рет қаралды 7 М.
Oxford Linear Algebra: Eigenvalues and Eigenvectors Explained
26:23
Tom Rocks Maths
Рет қаралды 39 М.
Destroying the Gaussian Integral using Papa Leibniz and Feynman
15:43
Flammable Maths
Рет қаралды 169 М.
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 98 МЛН
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 140 М.
are these the only square Fibonacci numbers??
26:39
Michael Penn
Рет қаралды 21 М.
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 37 МЛН