1) Papa Flammy, why do you keep misspelling Fiboinacci? ;) 2) 14:22 Eulergeddon best apocalypse! 3) I'd say 'so good' but I fear the BPRP revenge... 4) Can I call you Thomas Godchalk instead?
@blazep58816 жыл бұрын
Flammable Maths stick to papa, daddy just sounds... Weird
@46pi266 жыл бұрын
masterbaiter blaze dude my brother's name is Blaize (yes, with an i), and we would always call him the master baiter when we went fishing. What a coincidence!
@dalitas6 жыл бұрын
You might not be the smartest boi but you are the flammiest
@mishikookropiridze6 жыл бұрын
Papa fibonacci, linear algebra and cringe jokes ?! I am in heaven.
@kgeorge71536 жыл бұрын
seeing "linear algebra" in the title -> instant like
@rohitg15296 жыл бұрын
You're the only maths youtuber who goes at the perfect speed. Once your video is on 2x, I never need to pause to understand what you write, nor do I need to fast forward to see the next step.
@youurdream1826 жыл бұрын
Nice to see the content of lectures I’ve went through becoming a meme 😂
@youurdream1826 жыл бұрын
Flammable Maths, keep the spiciness up boi; love your vids papa ;*
@robinros25956 жыл бұрын
Nice! A small side-note: If you write T = S^(-1)AS, what you're actually doing is transforming your original space onto the column-vectors of S, performing A on that and then transforming back to the original space with base (1,0), (0,1). If you choose S to have eigenvectors of A for it's columns, you are actually performing the transformation of A on its own eigenvectors, so that's just multiplying the eigenvectors with their corresponding eigenvalues. So it's no surprise at all that T has the eigenvalues of A on its diagonal: this always happens (when A is diagonalisable). Hard to explain this over text, but when you see S and S^(-1) as transformation matrices it becomes totally clear that T should be a diagonal matrix and contains the eigenvalues of A :) Keep up the good memes :)
@kgeorge71536 жыл бұрын
Also it is not too hard to come up with the eigendecomposition one your own being exposed to the proper definition of a matrix-matrix multiplication: matrix on the left acting like a transformation on each column of the matrix on the right (then consider the matrix A times the matrix of its eigenvectors, and guess what's on the RHS). 3b1b did a great job explaining it, and it is probably the most crucial idea of the whole linear algebra, this makes everything reasonable, not artificial/coincidental.
@kgeorge71536 жыл бұрын
or may be not whole LA, but at least all decomposition problems -_-
@damiandassen77636 жыл бұрын
17:58 nice one "same spiel here"
@ChrisLuigiTails6 жыл бұрын
0:45 - That's exactly what I said to my mother this morning! My parents discovered Fiboinacci last week and kept harassing me all week saying it's everywhere in nature
@mathman61566 жыл бұрын
I've just finished the first year of maths, and I'm loving the content you create, keep going!
@maxwibert6 жыл бұрын
You can also check that phi conjugate is -1/phi, in which case the expression @23:36 simplifies to (phi^(n+1) - 1/phi^(n+1))/(phi^n - 1/phi^n). Because phi > 1, we have 1/phi^n approaches zero as n approaches infinity, so the fractional expression approaches phi^(n+1)/phi^n = phi.
@omega_sine6 жыл бұрын
Another great video Papa Flammy. These videos are a great way to start off my morning.
@sarthakchaudhary43752 жыл бұрын
It's been 4 years and this is still the best video for this topic :)
@deeptochatterjee5326 жыл бұрын
I saw your transformation matrix, and did the quick eigenvalue calculation in my head and instantly recognized the golden ratio equation. This is too good
@noahholmes6 жыл бұрын
father of math, my golden papa
@cameodamaneo6 жыл бұрын
I love the mini golden boi. I find him to be as useful as the popular golden boi a lot of the time.
@46pi266 жыл бұрын
Cameron Pearce I'm gonna start calling phi "Golden boi" from now on because of this comment
@alexeipisacane77816 жыл бұрын
Best video so far
@Adam-lx3mt6 жыл бұрын
Alternatively, you can just seek a solution of the form F_n = a*phi^n for some phi. Thus phi must satisfy phi^(n+2)=phi^(n+1)+phi^n from the Fibonacci relation. Dividing through by phi^n and solving the quadratic gives us two solutions phi1 = (1+sqrt(5))/2 and phi2 = (1-sqrt(5))/2. Since both phi1 and phi2 satisfy the Fibonacci relation we can could express F_n as a linear combination of the two. So F_n = a*phi1^n + b*phi2^n. Finally, we note that phi1=-1/phi2 and use the boundary conditions F_0=0, F_1=1 to give a and b. This proof is quite a lot shorter and easier.
@Dimiranger6 жыл бұрын
Everything strung wonderfully together, really good video!
@francescoburgaletta37466 жыл бұрын
Great! I'm finishing the exams for my first year and i just had the Linear Algebra one this february. To be honest i didn't like the subject and i still don't now, but it's somehow fascinating the perfectly coherent method used to solve many problems.
@Arycke6 жыл бұрын
Awesome video. I love that the phi is independent of the initial integer conditions of 0 and 1 or 1 and 1 ( I guess so long as it's not 0 and 0) as most typically know from grade school. Great moves Papa Flammy, keep it up, proud of you :3
@gamma_dablam5 жыл бұрын
Well ... it’s good that we don’t have Phi dependents here as we all know from Andrew’s channel how annoying those are
@michaelempeigne35196 жыл бұрын
This is great video about linear algebra and diagonalization. Until this day, I had no idea of how diagonalization was useful or how it worked.
@adamcummings206 жыл бұрын
I've started learning matrices in school so now I can finally understand this video. Epic
@tajpa1002 жыл бұрын
Thank you for your wonderful lectures.
@PapaFlammy692 жыл бұрын
@winterrain8704 жыл бұрын
Looks like Pell's Equations; And the matrix treatment was superb.
@DiogoSantos-dw4ld6 жыл бұрын
Great video! I've done diagonalisation of matrices in my course but never seen why they're that useful but with the cancelling of the eigenvalues vector it makes so much sense! Usually though when constructing the S matrix I've been told to take the normalised eigenvectors, since you didn't do it I'm guessing it's just used to clean up S and S-transpose/inverse
@noahgeller70186 жыл бұрын
"phi's little brother" I love 3blue1brown too
@i_deepeshmeena6 жыл бұрын
honestly a very informative video
@MePatrick732 жыл бұрын
Wow! I'm taking discrete math and we're learning how to solve linear homogeneous recurrence relations. We were only told to let an=r^n, find the characteristic polynomial, solve for the roots and then take a linear combinations to find the specifics values of the coefficients. This make so much sense now. Linear algebra in disguise xD !
@TheNachoesuncapo6 жыл бұрын
this is going directy to my favs! great work men! really appreciate your work...
@housamkak6466 жыл бұрын
That was an awesome video i wish u explain the linear algebra from zero
@keroleswael93326 жыл бұрын
Papa flammy destroying pure mathematics. Continue like this and prove more problems
@holyshit9225 жыл бұрын
I like Papa Fibonacci with series But this approach is nice if we look for analogous to differential equation way There is also variation of parameters for difference equation You have Casoratian instead of Wronskian and summation instead of integration Homogeneous part can be written as system of equations and solved as you showed
@mevnesldau84086 жыл бұрын
Are you reading my minds? I LOVE linear algebra!
@raph90546 жыл бұрын
Papa is the best
@jlue20515 жыл бұрын
thank you gins i really enjoyed this one
@46pi266 жыл бұрын
Papa Flammy vs. 3b1b Who would win?
@46pi266 жыл бұрын
Flammable Maths He has transcended the realm of Papas and is now a Daddy Holy shit
@ゾカリクゾ6 жыл бұрын
very interesting approach indeed
@lucashunter6441 Жыл бұрын
Wow a Papa Flammy question that actually showed up on one of my hw assignments
@Blacksun88marco6 жыл бұрын
0:42 TRIGGERED
@jamieee4726 жыл бұрын
Wonderful Video!
@emmanuelontiveros84466 жыл бұрын
Both eigenvalues are the golden ratio
@TheGarfield13376 жыл бұрын
Im ersten Semester hat unser Prof. in der ersten LinA1- Vorlesung einfach nur aus Jux eine Herleitung für die Fibonnaci-Formel gezeigt, für die man keine Vorkenntnisse braucht. In der letzten Vorlesung hat er dann quasi den Kreis geschlossen und zum Schluss diese Herleitung gezeigt, um nochmal zu komprimieren, was wir gelernt haben. Fand ich mega cool damals als kleiner Erstsemester :D
@cameodamaneo6 жыл бұрын
It's called the "Identity Matrix", my broski and we over here in New Zealand notate it as "I".
@cameodamaneo6 жыл бұрын
Oh wow. I guess I'm not a very intentive boi.
@owenmatwe22722 жыл бұрын
What a legend.
@andrijauhari85666 жыл бұрын
Thanks papa flammy :)
@ゾカリクゾ6 жыл бұрын
LOL dat euler at 14:30!! Definetely not expecting that
@CreativeStyled6 жыл бұрын
This was so good.
@sabhierules16 жыл бұрын
I call it the Identity Matrix or a matrix of the standard vectors. 9:38.
@fabiothezhao5518 Жыл бұрын
Damn Papa Flammy saved my ass on a discrete math problem that my instructor suggested (was abt finding a pseudo code (only integer operations allowed) for something with a structure similar to Fibonacci). Srs thanks!
@nicholasleclerc15836 жыл бұрын
I’m a pure math fan/geek, but I never really realized ‘till today how potent an useful Linear Algebra can be for just about freaking anything; and it made me feel like linear algebra was.... useful... Ywah, Ik, that doesn’t really sound pure math enthusiasm but more like Utilitarian blasé-ness, but I just never found *any* use better or on par ideas like calculus for some problems; I’ve even seen twice now, around a loooong interval of time and a long time ago too, a BlackPenRedPen video where a guest used linear algebra to solve a deeply complicated integral (calculus ITSELF was helped by this); a 2nd example of pure mathematics given a hand right here !
@12346sandy16 жыл бұрын
Love ur videos,keep it up!
@twakilon5 жыл бұрын
I actually had to learn how to solve these type of problems for my Linear Algebrs course.
@0707andy6 жыл бұрын
Oh yes, the O(logn) fibonacci is the best kind of fibonacci.
@damianbuzon81194 жыл бұрын
I love fibonacci .
@xCorvus7x6 жыл бұрын
Beautiful.
@fandeslyc6 жыл бұрын
Thanks ! Until now, i've never understood why there was a polynome
@leif10755 жыл бұрын
Why didbt You use FOIL Methid or quadratic formula at 8:50?
@sujanbhakat11994 жыл бұрын
Thank you
@Applefarmery6 жыл бұрын
Lol i actually had this same exact problem in maths at the time this was uploaded
@stenzenneznets6 жыл бұрын
Very nice
@townsoncocke16705 жыл бұрын
Forgive me for missing the reference in the video, but at 16:15 you replace two elements in the matrix with zeros saying those were our conditions for phi and phi conjugate. Could you refer me to when you explained those conditions for phi and phi conjugate that allowed that "substitution" (if that's the right word)? As this video is over a year old, this probably won't get a read, so I'll probably just end up calculating those elements to make sure they're zero. Anyway, great video! Thanks.
@ortollj45915 жыл бұрын
Hi Townson Cocke I did an other example with a 4x4 matrix , clik on the blue link on my comment
@duncanw99016 жыл бұрын
I have to admit my linear algebra computation ability is not exactly the best, I seem to have fallen into a strange gap between American schools teaching it in algebra 2/precalculus and not teaching it. Learned how to do it from your video though.
@pappaflammyboi57992 жыл бұрын
I'm a Flammy Boi fan.
@midaskeijzer71076 жыл бұрын
Next: integral of 1/(x+cos(x))? (or shouldn't give integral requests on non-integral video's?)
@masteryoda17486 жыл бұрын
C:90
@user-pn9zm8qg7k6 жыл бұрын
talking to a camera for a long time must be quiet a work, a good demonstration of diagonalization.
@WhiterockFTP6 жыл бұрын
@17:57 Same Spiel hier :D
@phileasmahuzier67132 жыл бұрын
So cool!
@hassnataha95934 жыл бұрын
If you want, can you explain Zeilberger's creative telescoping algorithm for definite hypergeometric sum, pleeeeeeeeeeeease
@anon76926 жыл бұрын
@ 2:07 "so it would be nice to work with some kind of matrix or vector" Is that ever nice?
1 - sqrt(5) I don' know if it's negative :thinking: ;)
@HighInquisitorBonobotheGreat6 жыл бұрын
19:15 That look xD "ye boi ezy huh?"
@koenth23596 жыл бұрын
That was great and funny.
@mohammedrahman97395 жыл бұрын
Hi I am a math teacher in University of Garmian in Kalar a small part of the Kurdistan Region-Iraq. And I have a one problem [ Let a and b be two real number such that a
@mohammedrahman97395 жыл бұрын
@@PapaFlammy69 thanks its a good idea . thanks for your attention
@azlanjor50196 жыл бұрын
👏lit mafs
@blazep58816 жыл бұрын
you're trying hard to bring smoke Memes back. Cool
@youngsandwich99675 жыл бұрын
Could you do this with the natural log Fibonacci product like thing (each number in the sequence is the product of the preceding 2 numbers)
@gammaknife1676 жыл бұрын
I'm sure many other people will tell you this too - it's the identity matrix. Loving this week, especially this one!
@GreenMeansGOF6 жыл бұрын
It’s usually denoted by capital i with a subcript of n where n is the size of the matrix(2x2, 3x3,...). P.S. I hate it that capital i looks like lowercase L.
@deeptochatterjee5326 жыл бұрын
Isn't the diagonalized matrix in general just the eigenvalues on the diagonal?
@almightyhydra6 жыл бұрын
Well, you assumed the fact that S is (v1 v2), so I think it's also fine to assume T is [e1 0; 0 e2]. They go together really. If you wanted to prove that you should have done the whole proof of the P^-1AP = D diagonalization process. ^_^
@maxblack4935 жыл бұрын
Salute.
@shawon2653 жыл бұрын
I appreciate what you did, but all the calculation is a little bit frustrating to me. That's why I never like Linear Algebra in my Engineering undergrad life. But thanks to 3b1b’s visualization techniques, I could tell you the diagonalized matrix right after you figured out the eigenvalues. Basically T is describing the same A matrix but in eigenbasis. So, the diagonal elements must be the eigen values indicating the scaling factor.
@thegrb936 жыл бұрын
Can the same be done with the Mandelbrot set's recurrence relation?
@cameodamaneo6 жыл бұрын
2:23 Please commit to your jokes in the future thanks.
@The2bdkid5 жыл бұрын
In diagonalization, the T is by definition the eigenvalues on the diagonal, right? That's how I was taught at least.
@GhostyOcean6 жыл бұрын
Hehe, "tongue twister" became "tongue breaker"
@GhostyOcean6 жыл бұрын
Flammable Maths tongue breaker makes more sense to me, also more fun to say
@ChrisLuigiTails6 жыл бұрын
That's because in Germany they say "Große Kartoffel" and it litterally translates to "tongue breaker" and I think that's beautiful
@janlange64164 жыл бұрын
@@ChrisLuigiTails omfg lololol
@SugarBeetMC4 жыл бұрын
13:10 Dat S.
@thomasblackwell95075 жыл бұрын
I thought that this was going to be about linear algebra. Herr Professor Papa Flammy all I can say is “NICHT SHIZEN!” You say you are stupid, I would hate to think of an evil smart you!
@WoWSchockadin6 жыл бұрын
So as Fibonacci is short for Filius Bonacci, which means son of Bonacci will the son cancel out with the papa and leave: Papa Fibonacci = Bonacci? :-D
@MuitaMerdaAoVivo6 жыл бұрын
Papa, you're the best! Love your channel!
@ThePron86 жыл бұрын
just one question: why didn''t you simply wrote T when you evaluated the eigvalues? I mean, the diagonal matrix expressed in terms of the eigvectors basis is (for construction) the matrix with the eigvalues on the diag, then maybe you wasted a lot of work 😂
@thechannelofeandmx47846 жыл бұрын
Papa flammy, can you integrate mah boi here? sin(2pi*sqrt(1-x^2))
@peterdriscoll40705 жыл бұрын
Yeah. Complicated way of getting this result. But cool. phi to the power of n is a solution of the recurrence relation.
@almightyhydra6 жыл бұрын
7:18 "chi" is pronounced "kai" (hard K sound and rhymes with "pie"). Also, the identity matrix is more commonly denoted as I rather than the "blackboard" 1.
@bamdadshamaei14156 жыл бұрын
What does pre record mean?
@matteodamiano67336 жыл бұрын
Papa Lucas when
@46pi266 жыл бұрын
Anyone who loves Papa Fibonacci needs to check out the song Lateralus. Also Papa Flammy>Papa Fibonacci
@46pi266 жыл бұрын
No songs for Papa Flammy tho :/
@cameodamaneo6 жыл бұрын
I hate the shoehorned mathematics in that song. The lyrics are pretty good though.
@46pi266 жыл бұрын
Cameron Pearce Yeah Maynard himself said he regretted it but I personally really like the riffs. Not because I'm a sheep and believe they somehow spiritually resonate with me, just because it sounds pretty badass.
@46pi266 жыл бұрын
Flammable Maths I think you forgot to apply the negative signs at some point after the Papa operator. It's actually Papa Flammy>Papa 46&pi
@elfaroukharb39796 жыл бұрын
Papaaaa
@thedoublehelix56615 жыл бұрын
Wow
@gnikola20136 жыл бұрын
0:34 Papa? Is that you? PAPA Y U NO PAY ATTENSHONE TO ME