Imagine a teacher’s face when seeing a bruh substitution on an exam answer...
@joda76974 жыл бұрын
The best thing is they can't even say it's wrong, even though they'll probably really want to!
@kishorekumarsathishkumar15625 жыл бұрын
maths: I will give you the entirety of the English and Greek Alphabet Flammy: BRUH
@neilgerace3555 жыл бұрын
That's peak Flammy there
@MusicalInquisit4 жыл бұрын
Don't forget the Hebrew alphabet (sometimes).
@carultch10 ай бұрын
@@MusicalInquisit The Cyrillic alphabet is starting to be used as variables as well. There was a Russian mathematician who coined the use of the Cyrillic letter Sha, that looks like a rectilinear W, in honor of his name that starts with an SH.
@pedrocrb5 жыл бұрын
Ive been promissed the integral of sec(x), and got the integral of sec(t). Lies
@neilgerace3555 жыл бұрын
Let's not have any sec(t)arian violence please :)
@pedrocrb5 жыл бұрын
@@neilgerace355 Yeah, let's also not be sec(x)ist
@randomguy-kt6vg5 жыл бұрын
Can't trust anyone these days
@eva-jd2zg5 жыл бұрын
But we were given the gift of bruh substitution! dbruh4life
@marcellomarianetti17705 жыл бұрын
Clickbaited
@semi88835 жыл бұрын
9 minutes for a simple integarahl like sec(x)? This is lookin very spicy Edit: I just finshed watching. Using bruh as a substitution is the most alpha thing anyone could ever do
@ThatGuy-kf5kc5 жыл бұрын
God damnit I'm in the middle of a lecture and I just started bursting out laughing at dbruh
@bucsfan25655 жыл бұрын
So this is what would happen if algebra was spelled algebruh.
@txikitofandango5 жыл бұрын
"LOOK AT ME I CAN MULTIPLY COSINE BY SOMETHING." Multiplies cosine by something
@technoguyx5 жыл бұрын
Ah yes, the desperate-freshman-in-the-middle-of-a-test way.
@DarthSidian5 жыл бұрын
Final Boss Integral: "I fear no man... But that t h i n g ..." *_Flashbacks of Papa Flammy using the legendary b r u h substitution_* Final Boss Integral: "It scares me."
@abdullahafridi68895 жыл бұрын
Anyway, up next: proving Fermat's last theorem, the COOL WAY!
@neilgerace3555 жыл бұрын
I have a great proof but it won't fit in the bruhgin
@mina_mozna5 жыл бұрын
this really be a fourth of bruhcember moment
@DemxnMNK5 жыл бұрын
so are you saying I can use bruh as my substitution on my calc final?
@spyrex39885 жыл бұрын
Ahh yus the only integral I always forget, thanks for refreshing my memory
@geethaudupa89305 жыл бұрын
was waiting for a "dBRUHgli equation" pun
@eva-jd2zg5 жыл бұрын
"bruh substitution" is groundbreaking and needs to be in textbooks. P.S. finally got the chance just now to sit down and do the whole integral with you -- love the "elementary > pretentious" method. P.P.S. I need to practice reading English mirrored for the memes. JENS, MY BRAIN! Loved this day as I totally understood everything that was going on, as you explained it bruhtifully.
@Neubulae5 жыл бұрын
Student: Here I'm gonna use the U-substitution to solve the integral! The integral itself: no U.
@sergiolozavillarroel37845 жыл бұрын
There is another way to solve it: Integral of sec(x) ln|x/2+π/4| + C Integral of csc(x) ln|x/2| + C
@neilgerace3555 жыл бұрын
7:12 when in doubt, multiply by the multiplicative identity
@toby62254 жыл бұрын
Actually the most logical thing to do would be to just find the answer in your lookup table
@bajelman5 жыл бұрын
Thanks now I have to use bruh sub in my finals soon
@toxicara5 жыл бұрын
Have you done the Hyperbolic functions "the cool way" yet?
@kairostimeYT5 жыл бұрын
(secx + tanx) multiplication totally has a really intuitive meaning.
@Ricocossa15 жыл бұрын
No it doesn't I hate it!
@Ricocossa14 жыл бұрын
@@alex_schwartz oh man. It's honestly the first time this happens to me. For shame!
@Dinghly4 жыл бұрын
The method flammable used is really useful since it doesnt involve transcendental function
@jacobolus2 жыл бұрын
It does if you keep digging into it. sec θ + tan θ is the stereographic projection of exp(iθ) through the point i onto the real axis, and has as its power series the zigzag numbers. See wikipedia: Alternating_permutation
@Rundas694205 жыл бұрын
Next exam, the bruh-substitution will come in handy for sure. Then, the people correcting my work will definitely have something to laugh about, besides my proofs :D
@gustavgadehebsgaard57274 жыл бұрын
Just found out that arctanh(sin(t)) is a valid result for this integheral, and now I never have to try and memorize this bullshit ever again
@sdparsons4 жыл бұрын
When I heard "d bruh" it was almost certainly the first time I've laughed out loud at a calculus video, haha
@sypherdex75135 жыл бұрын
Amma use bruh sub for my exam tomorrow 😂😂
@eva-jd2zg5 жыл бұрын
PLEASE tell us how that goes and if there are any "wtf" comments when you get it back but then they're like "well, it was right sooo...." FULL MARKS!
@sypherdex75135 жыл бұрын
@@eva-jd2zg i just found out he's a fan as well 😂😂
@eva-jd2zg5 жыл бұрын
@@sypherdex7513 Haha that's awesome XD
@braedenlarson91225 жыл бұрын
Okay today class we are learning bruh substitution
@carultch10 ай бұрын
I want to see you use Eszett and umlauted letters as variables.
@GoingsOn5 жыл бұрын
I’m never going to think of substitution the same way again 😂 Bruh-substitution is the best.
@edmund35045 жыл бұрын
bruh (keep it going)
@GoingsOn5 жыл бұрын
Bruh
@DarthSidian4 жыл бұрын
Bruh
@spaghettiking6533 жыл бұрын
Bruh
@matthewcapstick62425 жыл бұрын
I heard someone today calling capital sigma "e"
@matthewcapstick62425 жыл бұрын
@@PapaFlammy69 hey what about this.. B-rho
@eva-jd2zg5 жыл бұрын
BRUH! I have the infinite convergent series of pi tattooed under my collarbone (PapaLeibniz) and someone came up to me a few years ago and said "WOAHHHH COOL TATTOO! NICE EPSILON" and I literally face palmed. In front of them.
@WilliamKilcrease5 жыл бұрын
I never really knew why the multiplied it by sec(x) + tan (x) until I solved it legitimately and from your video. I would just memorize all the answers to common integrals
@RC32Smiths015 жыл бұрын
Any integral is of interest for me, especially the cool way 😎 Awesome work!
@RC32Smiths015 жыл бұрын
@@PapaFlammy69 :D
@connorr.1265 жыл бұрын
video idea: the most complicated way of finding the integral of x dx or something like that
@angelmendez-rivera3515 жыл бұрын
Connor R Using Feynman integration hahahahaha
@bucsfan25655 жыл бұрын
Connor R Find integral of 2x dx
@floreskyle15 жыл бұрын
Are riemann sums only usable to definite integrals??
@carultch10 ай бұрын
@@floreskyle1 Riemann sums aren't really that useful at all, other than laying the groundwork for teaching integration. Usually, if a Riemann sum can simplify to an elementary expression, you'll be able to integrate it with standard calculus methods anyway. Simpson's Rule is much more computationally efficient than a Riemann sum, where you need to integrate numerically. It's also more computationally efficient to rephrase the integrand as an infinite series, and integrate the individual terms of the infinite series.
@kostasDrou5 жыл бұрын
We're going to use BRUH
@douglasstrother65844 жыл бұрын
Papa Flammy's Quantum Mechanics! =
@nevonitay4 жыл бұрын
at 5:30, can someone explain how the second integral is du/u if u=1-bruh then 1+bruh=2-u times dbruh is du/(u-2).. ...right? am i wrong? where am i wrong?
@seankelly89065 жыл бұрын
Nicely done! I love your comment about the pretentious multiplication. I feel compelled to mention that I'm sure you could do a hyperbolic substitution (Euler sub) as well, re: using the 1+sec^2. The math is entirely similar to the evaluation of the archyperbolic tangent.(Indeed, though hyperbolic trig isn't taught much, people usually do a similar pretentious move evaluating such integrals, rather than Euler sub or u sub from rotating and scaling the unit hyperbola to y= 1/x.)
@gamma_dablam5 жыл бұрын
A nice integral for combustible bois and grills: [0, pi/2] of sin(2x)cos(x)e^(2x) I think you'll enjoy this one
@angelmendez-rivera3515 жыл бұрын
Godwin Austen What is that notation? Is it supposed to say sin(2x)?
@gamma_dablam5 жыл бұрын
@@angelmendez-rivera351 yes Sin(2x) It is a typo
@tanvec5 жыл бұрын
Time to see some algebruh shirts in the papa Flammy store
@sebastianquinterouribe3685 жыл бұрын
Thanks papa flammy, never thought of this route
@stolenmonkey74779 ай бұрын
I will use a bruh substitution on my next first ever exam I am not in calc yet, I am studying ahead This is the best idea I have ever seen
@whybeee5 жыл бұрын
br(u)h substitution Edit: Papa liked my comment. My life goal has been fulfilled.
@That_One_Guy...5 жыл бұрын
Oof
@fanyfan74665 жыл бұрын
rip
@ganeshprasad98515 жыл бұрын
Papa... Can you please prove the Reimann Hypothesis of the Zeta function :D ? I would love to see you prove that the non trivial zeros are present on the critical line and the non negative even integers :)
@angelmendez-rivera3515 жыл бұрын
Ganesh Prasad The non-negative even integers give you trivial zeroes, not non-trivial.
@ganeshprasad98515 жыл бұрын
@@angelmendez-rivera351 I m mentioed non trivial zeros only for critical line
@alberteinstein36123 жыл бұрын
My Calc teacher: today we are going to learn u-subs Me, who uses bruh-subs instead: I am 2 parallel universes ahead of you
@gamingstars89564 жыл бұрын
2:58 thw best part🤣🤣🤣
@PapaFlammy694 жыл бұрын
:D
@The1RandomFool4 жыл бұрын
In addition to secant, I also have the integral of secant cubed in my head.
@MathIguess5 жыл бұрын
Couldn't stop laughing at that substitution
@anshumanagrawal3463 жыл бұрын
When I got first got this question as homework I used this same method then after spending sometime simplifying it, I realised if I just directly multiplied the denominator and numerator by sec + tan, the numerator just becomes the derivative of the denominator so the answer would easily come out to be logarithm of sec + tan. I thought I was a genius for figuring that out :p
@yeremiafrans94255 жыл бұрын
PAPA FLAMMY'S ADVENT CALENDAR (ouaiaaaaaaaaahiiije)
@frozenmoon9985 жыл бұрын
Coolio, we are going to use Bruh.
@nadeemhameedi11965 жыл бұрын
Multiply and divide sect by (sect + tant) u will get sec squared t + secttant which is the drivative of sect+ tan t so u finally get Ln (sect+ tan t)+c
@shlokdave6360 Жыл бұрын
I really appreciate what you said at the start of this video. Its so idiotic to multiply and divide by secx + tanx- its cheating. Thank you for making this one.
@nnniv5 жыл бұрын
*_COOL_*
@maquiavelo71574 жыл бұрын
😳😳😳Bruh substitution!! That's amazing Is there a bruh substitution for dx/ (x^2 - 1) Instead of using x=secz method?
@carultch10 ай бұрын
Given: integral dx/(x^2 - 1) Factor the bottom: integral dx/[(x + 1)*(x - 1)] Set up partial fractions: 1/[(x + 1)*(x - 1)] = A/(x + 1) + B/(x - 1) Use Heaviside coverup to find A & B: at x = -1, A = 1/[covered*(-1 - 1)] = -1/2 at x = +1, B = 1/[(+1 + 1)*covered] = +1/2 Thus: 1/[(x + 1)*(x - 1)] = 1/2/(x - 1) - 1/2/(x + 1) Split the integral: 1/2*integral 1/(x - 1) dx - 1/2*integral 1/(x + 1) dx Let bruh = x - 1, and let chad = x + 1. Rewrite the first integral in the bruh world, and rewrite the second integral in the chad world. dbruh = dx dchad = dx Thus: 1/2*integral 1/bruh dbruh - 1/2*integral 1/chad dchad integral 1/bruh dbruh = ln|bruh| integral 1/chad dchad = ln|chad| Thus we have: 1/2*ln|bruh| - 1/2*ln|chad| Combine results with log properties: 1/2*ln(|bruh/chad|) Recall definitions of bruh and chad, add +C, and we're done: 1/2*ln(|(x - 1)/(x + 1)|) + C
@MrRyanroberson15 жыл бұрын
1:33 i don't actually know the answer to this either, so i'll try before watching. int 1/cos dt. so let's see... maybe some complex numbers? i'm bad at guessing. int 2/(e^it + e^-it) dt. not better... int 2(e^it - e^-it)/(e^2it - e^-2it) dt int 2sin(t)/sin(2t) well that was interesting. 2sin(t)cos(t) = sin(2t), derived from scratch! maybe instead a u sub is in order. u = 1/sin(t), du = cos/sin^2 dt, u^2 du = cos dt so we get: int u^2/cos(t)^2 du. but wait! cos(t)^2 = 1 - 1/u^2 int u^2/(1-u^-2) du. this looks like a job for trig functions! sin^2 + cos^2 = 1... so 1 + cot^2 = 1/sin^2 (dividing). then -cot^2 = 1 - 1/sin^2, so let sin(v) = u. cos(v) dv = du int sin(v)^2 cos(v)/-cot(v)^2 dv = int -cos(v)^3 dv. Finally! I know there's a solution in this but i tried and got a really messed up answer... I'm also pretty sure that int cos^-1 isn't the same as int -cos^3. I should get some more sleep... I swear i'm good at integrals!
@eva-jd2zg5 жыл бұрын
Excited to watch this tonight! But Papa, don't you mean the Qool way? :P #pfadventcalendar
@vineetkaddu12145 жыл бұрын
Simple and Clever! Well done!
@DevalMehtaAstrokidintraining5 жыл бұрын
In the last step, you could also have multiplied the numerator and denominator inside the logarithm by (sec(t)/sect(t)) and that would get you the usual result.
@liroy20575 жыл бұрын
EDIT: nvm i missed the part where you said "the same but with a +" i have a question when substituting at 5:28 why is 1/1+BRUH equal to 1/u when u = 1-BRUH if 1-BRUH = u then 1-u = BRUH then 1/(1+BRUH) = 1/(1+(1-u)) = 1/(2-u) or am i missing something
@Otomega15 жыл бұрын
Papa flammy: "who remember the integral of sec(x) it's fuckin stupid" Also papa flammy: "i think we have like a sec(x) and a tan(x) with a natural log somewhere.."
@David-km2ie5 жыл бұрын
Bruh, amazing approach. Next time, you could do it with a Weierstrass substitution. Cuz, why not?
@kurt18664 жыл бұрын
i have a E theoretical math, in the norwegian equivelant of highschool, and i am fucking wathcing this shit rn
@KazACWizard Жыл бұрын
as soon as you said that a cos substitution was pointless i took the challenge. if rist let the integral be of -secx as the derivative of cos is negative sine. rewrote 1 as the obvious combination of sinx and cosx squared. then i let u be cos x therefore by using the definition of sines and cosines i constructed a triangle and rewrote sine in terms of u. then i rewrote the integral. making another substitution letting k be square root of 1-u squared. then differentiating allowed for a nice fraction. 1/(1-k^2) then by partial fractions i got 1/2ln((1-sinx)/(1-sinx)) then noting that cosxtanx is the same as sinx i rewrote. put the square root in. rationalising i got sec^2x-tan^2x which is one so i got ln(1/secx+tanx) then putting the minus back in i got the answer. a bit of a read but i think its a nice approach.
@nicholasthesilly5 жыл бұрын
Ah yes, the dangers of sec(t)arianism
@thepruh11515 жыл бұрын
"bruh and bruh is going to cancel out" aight, next time someone says bruh, finna hit them with the bruh
@Jaffa-yt1gx4 жыл бұрын
why is bruh the most stupidest shit ever but absolute gold
@Mr35diamonds5 жыл бұрын
Will integration by bruh-substitution get me marks in my exam?
@kishorekumarsathishkumar15625 жыл бұрын
i mean if my math teacher used perpendicular by perpendicular x for d/dx, yes you can like the upside down T like T/Tx
@angelmendez-rivera3515 жыл бұрын
Kishorekumar Sathishkumar Wait wtf lol
@darkseid8564 жыл бұрын
Greatest substitution in the history of mathematics .
@거미남자_spidy5 жыл бұрын
coool integral papa!
@angelmendez-rivera3515 жыл бұрын
3:05 *I'm about to do what you'd call a pro-gamer move.*
@weltkaiserendzeit24175 жыл бұрын
Ok, the bruh substitution is a very advanced skill for pros only. But, now, time for the real challenge : Try integrating from 2 to infinity the function zeta(s)-1 ds where zeta is the Riemannsche ζ-Funktion. If you choose to do it, then good luck !
@kishorbhushan82925 жыл бұрын
is it bra aur something else?? 🤣🤣🤣
@matron99365 жыл бұрын
Alle haben für die Bruh Variable gewartet.
@osamaattallah69565 жыл бұрын
Man is he high🤣🤣🤣
@vcl-eq3vv5 жыл бұрын
Wow, you solved integral of sec(x) like a absolute chad.
@JaybeePenaflor5 жыл бұрын
Papa Flammy, you lost the perfect chance to use sec (x) in your integral.
@BardaKWolfgangTheDrug5 жыл бұрын
awwww Papi gettin sexy handsome when he's agressive to secans *-*
@ogorangeduck5 жыл бұрын
Best is count the squares on Desmos
@holyshit9225 жыл бұрын
I calculated it the same way but Euler substitution fans may use sect = u - tant substitution
@kishorekumarsathishkumar15625 жыл бұрын
d/dn (sec(ant)/cos(ine)) i is the unit imaginary constant
I have to say I went to go download an amogus twerk gif and it asked me if "I would like to download it *again* " Good Sunday so far also gud integral Flammerble Meff
@thephysicistcuber1755 жыл бұрын
Will you do some complex analysis this year?
@thephysicistcuber1755 жыл бұрын
@@PapaFlammy69 *cries in C* bruh
@vladislav_artyukhov5 жыл бұрын
d bruh 🤣🤣
@normmacdonaldfan5 жыл бұрын
Was so disappointed when you brought back sin(t) for all the bruhs. RIP bruh
@deepthakur149165 жыл бұрын
Next video integral(x^(-x),0,∞)
@deepthakur149165 жыл бұрын
I got heart from papa yay!!
@zoltankurti5 жыл бұрын
@@deepthakur14916 well x^(-x) goes to 1 as x goes to infinity, so that integral surely diverges.
@deepthakur149165 жыл бұрын
@@zoltankurti it converges
@deepthakur149165 жыл бұрын
@@zoltankurti it goes to 0 as x approaches infinity
@zoltankurti5 жыл бұрын
@@deepthakur14916 damn. 1/(x^x). Need to get some sleep.
@tiziocaio1015 жыл бұрын
Could you do some complex analysis video?
@FGj-xj7rd5 жыл бұрын
Ahahahah I am dead. Dude, this is so badass.
@leftenanalim5 жыл бұрын
I know from the very beginning that you were using the Hagoromo Chalk
@WhattheHectogon5 жыл бұрын
Oy, that weird first representation of the final answer is fyre...never seen it presented like that. Way cool brrruruuurururuhhrhhhrhaiaaiaiaioowhuweyeyhhhhh. Loving diese Advents. I've got a pretty cool video coming up after this one I'm uploading today you might find pretty neat ;D
@hansb13375 жыл бұрын
bruh
@Stephmusiculture5 жыл бұрын
It was clear, thanks.
@dcterr15 жыл бұрын
Cool explanation but kind of a weird teacher!
@hasoncraft4680 Жыл бұрын
Thank you bro🔥
@wryanihadАй бұрын
You can say tanh(cosx) instead of partial fraction Nice work Good for you
@justim454511 ай бұрын
how does cos(bruh) = sin(bruh)? what am i missing
@물고기-p4f4 жыл бұрын
I thought you would reveal the cooler way
@ajaykaushal33733 жыл бұрын
I think @MuradBashirov was here
@eliaspelo88444 жыл бұрын
In finnish high school's you have to take the matriculation exam for those subjects you want (min 4) (kind of like the SAT's I think). Well my matriculation exam on math is coming up in two months. The exam is really official and stuff. What do you guys think should I use "bruh" as a variable in every problem I can? That would be hella funny to look at few years later.
@eliaspelo88444 жыл бұрын
@@PapaFlammy69 Xdd. With Papa Flammy on my side I'll do it!! Love your content btw