One part of the problem can be done by mental arithmetic - no mathmatical manipulations required. The triangle can be made up of two standard right angle triangles - a 5:12:13 and a 9:12:15 ( 3x scaled up 3:4:5 triangle) From inspection the common perp height is 12 so area is (12 x 14)/2 =84.
@billferrol42025 ай бұрын
Cosine rule to get one angle, then use that angle in area=1/2a.b.sinangle
@PrithwirajSen-nj6qq5 ай бұрын
I think it is not required to know any angle. Just find the value of Cos C. Then sinC =√(1-cos^2C) Put this value in 1/2absinC to get the area.
@prossvay87445 ай бұрын
1st method Connect C to D (D on AB) CD right AB Let CD=h ; AD=x so x^2+h^2=13^2=169 (1) CD=AB-AD=14-x h^2+(14-x)^2=15^2=225 h^2+x^2+196-28x=225 (2) (2) 169+296-28x=225 So x=5 (1) h^2+25=169 h=12 Area of triangle=1/2(14)(12)=84 square units. 2nd method heron's formula √s(s-a)(s-b)(s-c) s=(a+b+c)/2=(13+14+15)/2=21 So area of triangle√21(21-13)(21-14)(21-15)=84 square units. 3rd method 14^2=13^2+15^2-2(13)(15)cos(x) Cos(x)=33/65 Sin(x)=√1-(33/65)^2=56/65 Area of triangle=1/2(13)(15)(56/65)=84 square units.Thanks sir.❤❤❤
@SirKaftar_Requiem5 ай бұрын
We Can use cos Law
@PrithwirajSen-nj6qq5 ай бұрын
The second method may not be called a separate method. It is a repetition of the first method .
@jamestalbott44995 ай бұрын
Thank you!
@unknownidentity28465 ай бұрын
Let's do it: . .. ... .... ..... With Heron: s = (13 + 14 + 15)/2 = 42/2 = 21 A = √[21*(21 − 13)*(21 − 14)*(21 − 15)] = √(21*8*7*6) = √(3*7*2³*7*2*3) = 84 Without Heron: May h be the height of the triangle according to base AB. By applying the Pythagorean theorem we obtain: h² + x² = 13² h² + (14 − x)² = 15² h² + x² = 169 h² + 196 − 28*x + x² = 225 h² + x² = 169 h² + x² − 28*x = 29 28*x = 140 ⇒ x = 5 ⇒ h = √(169 − x²) = √(169 − 5²) = √(169 − 25) = √144 = 12 A = (1/2)*AB*h(AB) = (1/2)*14*12 = 84 ✓
@vinijr_best59255 ай бұрын
It is good idea to mention in the description which method will be used. so visitors can try that.
@jamesrocket56165 ай бұрын
Via Heron's Formula: Area = √s(s-a)(s-b)(s-c) s= (a+b+c)/2 s= (13+14+15)/2 s= 21 Area = √21(21-13)(21-14)(21-15) Area = 84 sq.units
@santiagoarosam4305 ай бұрын
Con un simple y rápido cálculo mental podemos suponer que si 15=3*15 → h=3*4=12 → Se confirma la hipótesis puesto que AB=5+9 y la ecuación 5²+12²=13² es verdadera → Área ABC=14*12/2=84 ud². Utilizando la fórmula de Herón obtenemos el mismo resultado: Perímetro =13+14+15=42→ Semiperímetro =21→ Área ABC=√ (21*6*7*8)=84 ud². Gracias y un saludo cordial.
@alster7245 ай бұрын
Very easy even without Heron's
@MrPaulc2222 ай бұрын
Although Heron's is fine for this, I tried another way. I overcomplicated this, so messed it up a bit. Using your labelling, I had a point D on the base. I also had a point (M) for the base's midpoint. AM = BM = 7 DM = x CD = h To find x I then went: 13^2 - (7-x)^2 = 15^2 - (7+x)^2 169 - (49 - 14x + x^2) = 225 - (49 + 14x + x^2) Remove brackets and change signs where needed: 120 + 14x - x^2 = 176 - 14x - x^2 120 + 14x = 176 - 14x Therefore, the difference between 120 and 176 (a difference of 56) is 28x, so x = 2 as in 14x = 56 - 14x, so 28x = 56 so x = 2. This splits the base into 5 and 9 (7-x and 7+x) Okay, it works fine this time. I will leave this up there as an alternative method, but I messed it up first attempt. I think I forgot to change one of the signs. The 5,12,13 and 9,12,15 (multiple of 3,4,5) takes care of the rest. Thanks once again.
An other method could be using the Briggs formula with a,b,c the 3 sides of the triangle finding sin alpha/2 and cos alpha/2. And in this way finding sin alpha as 2*sin alpha/2*cos alpha/2. Once known sin alpha we can find area with trigonometry
@Marcus-y1m5 ай бұрын
😮😮😮😮😮😮😮
@PrithwirajSen-nj6qq5 ай бұрын
,we may first find CosC CosC=(169+225-196)/2*13*15 From here sinC=√(1-cos^2C) Then 🔺 =1/2*13*15*sinC ++no need to evaluate the magnitude of angle ++
@paulbrower5 ай бұрын
Here's my cheat: there is only one perpendicular to a line from a point not on that line, and the "13" side suggests a 5-12-13 right triangle x is 5 and b is 12, so the area is 84, or half bh (12x14 = 168). It checks out, because 14-h = 9, and 9-12-15 is also a right triangle, the basic 3-4-5.
Here I go again on my own!! 1) 14 = X + (14 - X) 2) Let h be the Height 3) h^2 = 15^2 - (14 - X)^2 4) h^2 = 13^2 - X^2 5) 225 - (14 - X)^2 = 169 - X^2 6) Solution : X = 5 7) h^2 = 144 8) h = 12 9) A = (14 * 12) / 2 10) A = 168 / 2 11) A = 84 12) ANSWER : Area of Triangle equal 84 Square Units.
@sergeyvinns9315 ай бұрын
В этом волшебном треугольнике, площадь равна двум периметрам. Р=42, А=84!
@misterenter-iz7rz5 ай бұрын
S=(3×14)/2=21, so A^2=21×8×7×6=3^2×7^2×2^4=(3×4×7)^2, A=84😮13^2-s^2=14^2-(15-s)^2, 30s=198, s=6.6, h^2=13^2-6.6^2, h=11.2, area=1/2×11.2×15=84.😅
@billcame69915 ай бұрын
It's been a while and I did not remember Heron's formula. I figured this out using the second method.