Find all natural numbers satissfying the equation

  Рет қаралды 19,754

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер
@Akenfelds1
@Akenfelds1 2 күн бұрын
You are the best mathematics educator I've ever seen on KZbin. You neither overexplain nor underexplain. Every step is 100% clear.
@gusmath1001
@gusmath1001 Күн бұрын
Nice presentation! Note, however, that it’s not necessary to use math induction. Claim: If n>3, then n! >(n(n+1))/2. Multiplying both sides by 2 and dividing by n, we get the equivalent inequality 2(n-1)!>n+1. As 2(n-1)!>2(n-1), to prove the claim it will suffice to show that 2(n-1)>n+1, for n>3. But this is immediate: 2(n-1)>n+1 iff 2n-2>n+1 iff 2n-n>2+1 iff n>3.
@PrimeNewtons
@PrimeNewtons Күн бұрын
I realized that while watching the video. Thanks.
@puneetkumarsingh1484
@puneetkumarsingh1484 22 сағат бұрын
Great application of the Principal of Mathematical Induction. We almost forget how powerful it can be at times 😅
@jay_13875
@jay_13875 2 күн бұрын
Because n! ≥ n*(n-1)*(n-2) and n*(n+1)/2 < n*(n+1) for all n≥4, all we need to show is that (n-1)*(n-2) > n+1 n² - 3n + 2 > n + 1 n² + 1 > 4*n n + 1/n > 4, which is true for n ≥ 4 since 1/n > 0
@jpl569
@jpl569 2 күн бұрын
Excellent lecture ! Induction works smartly, with ± heavy writings… Let’s try directly : in order to prove that n ! > n (n + 1) / 2 for any n ≥ 4, equivalent to 2 (n-1) ! > n + 1, we notice that (for n ≥ 4 ) : 2 (n-1) ! > 2^(n-1) because 2 (n-1) ! = 2x2x3x…x(n-1), and 2^(n-1) > n + 1 by studying f(x) = 2^x - x - 2 for x ≥ 3 (easy stuff…). Then we’ve got it… Thank you for your interesting videos ! 🙂
@jpl569
@jpl569 2 күн бұрын
An other way is : let U_n = 2 (n-1) ! and V_n = n +1. Then U_n+1 / U_n = 2 n and V_n+1 / V_n = (n+2) / (n+1). As U_3 = V_3 = 4, and for n ≥ 1, U_n+1 / U_n > V_n+1 / V_n, Then V_n < U_n for n ≥ 4.
@kingsgamer2019
@kingsgamer2019 2 күн бұрын
Never stop learning, nice lecture, you are genious.
@mahmoudalbahar1641
@mahmoudalbahar1641 2 күн бұрын
I am thankful for your efforts, your videos are always nice and filled with benefits, it's our pleasure to watch your videos.
@PrimeNewtons
@PrimeNewtons Күн бұрын
I am grateful for you
@bashkimelbasani2382
@bashkimelbasani2382 Күн бұрын
Very methodical explanation profesor! I'm very content to You! Bravo!
@adamcionoob3912
@adamcionoob3912 2 күн бұрын
Great video. While comparing n^2 + n with n + 2, you could also see that since n >= 4, n^2 >= 16 so n^2 + n >= n + 16 > n + 2
@s.n.mishra501
@s.n.mishra501 Күн бұрын
Nice point
@Your_choise
@Your_choise 2 сағат бұрын
This can be done without using the formula for Σi=(n)(n+1)/2 since If n=1, then 1=1, If n=2, then LHS=3, RHS=2 if n=3, RHS=LHS=6 And if n ≥4, 1+2+3+…+n n-1+1=n, n! ≥n(n-1)*2>n*n=n^2> 1+2+…+n.
@michaelz2270
@michaelz2270 2 күн бұрын
You have n(n+1)/2 = n! iff (n + 1)/2 = (n-1)!. But one has (n - 1)! >= n - 1 > (n +1)/2 for all n > 3. So you don't have to check beyond n = 3.
@glorrin
@glorrin Күн бұрын
Something bugged me, in the induction, since we only needed n>=2 why couldn't we start at 2 ? well, 15 years after formerly learning about induction, I finaly understand how important the initial step is (base case). if we start at 2, initial step would be 2! = 2 2+1 = 3 2 is not greater than 3 So we can't start with 2, And we can't start with 3 either since we have shown it is equal. This is a marvelous Induction.
@dan-florinchereches4892
@dan-florinchereches4892 2 күн бұрын
Hello sir, Very interesting approach to the problem. But if we are looking for the condition of the equality happening is it not easier? What needs to happen so n*(n+1)/2=n! ? Since n!=0 we can divide by n so (n+1)/2=(n-1)! n+1=2(n-1)! n=2(n-1)!-1 If we replace n by k+1 to have a nicer number inside the factorial k=2k!-2 so k=2(k!-1) which means that k>k!-1 or k+1>k! and we can easily verify that this proposition is only true for very small values
@maxhagenauer24
@maxhagenauer24 2 күн бұрын
9:42 where did that new n+1 on the RHS come from?
@maxhagenauer24
@maxhagenauer24 2 күн бұрын
@Salko_ So to get (n+l)! > (n+1)(n+2)/2, he took n! > n(n+1)/2 and replaced n with n+ 1? And then to get (n+1)n! > (n+1)n(n+1)/2, he took n! > n(n+1)/2 and multiplied both sides by n+1?
@Myhair0_0
@Myhair0_0 2 күн бұрын
​@Salko_ but are we not proving that n! > n(n+1)/2 so using that fact in our proof is circular logic?
@KavyaVINOCHA
@KavyaVINOCHA 2 күн бұрын
we multiply both sides of eq at 7:11 by n+1
@jaime9927
@jaime9927 2 күн бұрын
@Myhair0_0 That's why we have to check whether the inequality holds for the base case (n=4 in this example) Then, the proof from the video, which @Salko_ summarized, shows that if the inequality holds for any integer >=4, then it holds for the next integer. Thus, after manually verifying that the inequality holds for n=4 and completing the short proof, we know that the inequality holds for n=4, n=4+1=5, n=5+1=6, and so on. Hope this helps
@maxhagenauer24
@maxhagenauer24 2 күн бұрын
@@Salko_ I don't know why the freak my response got deleted last night, I was asking this: Are you saying (n+1)! > (n+1)(n+2)/2 come from replacing n with n+1 in the original n! > n(n+1)/2? And does (n+1)n! > (n+1)n(n+1)/2 cone from the original but after multiplying both sides by n+1?
@dengankunghacharles1115
@dengankunghacharles1115 2 күн бұрын
Excellent job
@benjaminvatovez8823
@benjaminvatovez8823 8 сағат бұрын
Thank you for your video. It is possible not to use induction: as (n-1)! = (n+1)/2 is in Z, n must be odd and as (n-1)! = (n-1).(n-2)..2.1 > (n-1)(n-2).4 for any n >=7, we get (n-1)(8n-17) < 2 which is impossible as n>6.
@prajjawaltiwari9566
@prajjawaltiwari9566 2 күн бұрын
10:25 only if n>1, which is understood here...
@AinomugishaAllan
@AinomugishaAllan 19 сағат бұрын
Thank you my best professor but I didn't understand the end part of the solution especially on how you got that of n+n to be equal to (n+1)!
@pizza8725
@pizza8725 2 күн бұрын
n²+n isn't always bigger than n+n as it is smaller at n=(0,1)
@AnesMechekak
@AnesMechekak 2 күн бұрын
but n is greater then 3
@pizza8725
@pizza8725 2 күн бұрын
I know but i said that it isn't always, but it is in that case
@VisionXu-y6k
@VisionXu-y6k Күн бұрын
can you use gama function to figure out the equation ∑n=n!?
@Rahul.G.Paikaray27
@Rahul.G.Paikaray27 2 күн бұрын
It's really interesting sir make more videos like this sir 💯💯💯❣️💫✨🌟
@FortuneMachaka
@FortuneMachaka Күн бұрын
You are the best sir
@yurenchu
@yurenchu 2 күн бұрын
From the thumbnail: the solutions are n=1 and n=3 . For any n>3, the cumulative product is greater than and also will be increasing faster than the cumulative sum. I'm watching the video to see if you consider n=0 a solution or not (and why).
@robertveith6383
@robertveith6383 2 күн бұрын
@ Prime Newtons n = 1 *OR* 3, not 1 "and" 3.
@itsphoenixingtime
@itsphoenixingtime 2 күн бұрын
Very rough, not rigorous idea but... I figured that because the factorial grows much faster than the quadratic, after some point there won't be any more solutions, so there isn't any need to check every case. I remembered the 1 + 2 + 3 = 1 x 2 x 3 meme, so n = 3 n also = 1. That was basically my reasoning, because after n = 3 the factorial grows much faster than the quadratic so they will never ever intersect again, the only need is to check for answers within that range. I think the proof of the factorial outlasting the triangular numbers for n >= 4 was rigorous to help cement that idea that they can never be equal and hence no solutions for that region.
@ThomasMeeson
@ThomasMeeson Күн бұрын
That’s obvious and as you said not rigorous
@stevenwilson5556
@stevenwilson5556 2 күн бұрын
I immediately know of 1, and 3. I think those are the only 2 but proving that is a whole different issue. I might be able to do that but not sure exactly what I'd do maybe induction or contradiction but would take awhile to prove it.
@NobleTheThinkingOne678
@NobleTheThinkingOne678 Күн бұрын
All you have to do is prove that n! grows faster than n(n+1)/2 for all n>=4. You can prove that and thus since 24>10. That is 4!>10 and that n! grows faster than n(n+1)/2 then I can show that n(n+1)/2 can never catch up to n! thus only 1 and 3 are true
@ishanpurkait9124
@ishanpurkait9124 2 күн бұрын
sir , can you record me some books to learn advanced mathematics
@Tommy_007
@Tommy_007 2 күн бұрын
Begin with "Algebraic Geometry" by Hartshorne.
@ishanpurkait9124
@ishanpurkait9124 2 күн бұрын
@Tommy_007 thank you
@Tommy_007
@Tommy_007 2 күн бұрын
@@ishanpurkait9124 It's a VERY difficult book. I'll recommend that you start with basic books about calculus, elementary number theory, classical plane geometry, linear algebra, and abstract algebra.
@Tommy_007
@Tommy_007 2 күн бұрын
An older series of books that are recommended for interested high school students: New Mathematical Library.
@ishanpurkait9124
@ishanpurkait9124 2 күн бұрын
thank you ,can you help me choose between calculus by stewart ( republished by clegg and watson ) and thomas , both the early transcendental version
@juergenilse3259
@juergenilse3259 2 күн бұрын
I thin, the o natural number satisfying this equation are n=1 and n=3. The left side can be substituted b n*(n+1)/2 (according to gauss forula for sumof the first n natural numbers) while the rigtside is equall to n! (accordingto the definition of factorial).So we seach values for n with n*(n+1)/2=n!. Since n! is per definition n*(n-1)!, we can transform this equation to (n+1)/2=(n-1)!. n=1 and n=3 are possiblesolutionsforthhis equation, because (1+1)/2=(1-1)! and (3+1)/2=(3-1)!. Equal numbers can not fullfill the equation, because the right side is alwas a natural number, while the left side is for even values of n neer an integer. For all odd numbers n greater than 3, (n-1)! is greater than (n+1)/2, so n=1 and n=3 are the only solutions. For me, it was obvious,that (n-1)! is greater than (n+1)/2 for an n>3, but nice, that you gave a proof ...
@abulfazmehdizada
@abulfazmehdizada 2 күн бұрын
There are exactly 77000 ordered quadruples (a,b, c,d) such that gcd (a,b, c,d) =77 and lcm (a,b, c,d) =n, What is the smallest possible value of n? Hello teacher. Could we look at this question? There were many solutions that i didn't understand well. I would like to see your approach
@yurenchu
@yurenchu 2 күн бұрын
What restrictions are placed on a, b, c, d ? For example, can a, b, c, or d be a negative integer?
@abulfazmehdizada
@abulfazmehdizada 2 күн бұрын
@yurenchu there's no restrictions I think
@yurenchu
@yurenchu Күн бұрын
@@abulfazmehdizada In that case, there is no possible solution for n ; because the number of quadruples has to be a multiple of 16 ; and 77000 is not a multiple of 16 . A quadruple (a,b,c,d) cannot contain any 0, because in that case, n=0 and in that case there are an infinite number of quadruples, for example of the form (0, 77, 77, 77k) where k is any non-zero integer. Therefore, |a| , |b| , |c| and |d| must be positive (i.e. nonzero). Now, suppose (a, b, c, d) = (t, u, v, w) satisfies gcd(a,b,c,d) = 77 and lcm(a,b,c,d) = n , and t, u, v, w are positive integers. Then (t, u, v, w) represents a set of 16 _distinct_ quadruples that each satisfy the gcd and lcm conditions, namely (a, b, c, d) = (t, u, v, w), (t, u, v, -w), (t, u, -v, w), (t, u, -v, -w), (t, -u, v, w), (t, -u, v, -w), (t, -u, -v, w), (t, -u, -v, -w), (-t, u, v, w), (-t, u, v, -w), (-t, u, -v, w), (-t, u, -v, -w), (-t, -u, v, w), (-t, -u, v, -w), (-t, -u, -v, w), or (-t, -u, -v, -w). This is true for any quadruple (t, u, v, w) of positive integers that satisfies the conditions, hence the total number of quadruples must equal {16 times the number of distinct quadruples of only positive integers}.
@yurenchu
@yurenchu Күн бұрын
@@abulfazmehdizada In that case, there is no possible solution for n ; because the number of quadruples has to be a multiple of 16 ; and 77000 is not a multiple of 16 . A quadruple (a,b,c,d) cannot contain any 0, because in that case, n=0 and in that case there are an infinite number of distinct quadruples, for example of the form (0, 77, 77, 77k) where k is any integer. Therefore, |a| , |b| , |c| and |d| must be positive (i.e. nonzero). Now, suppose (|a|, |b|, |c|, |d|) = (t, u, v, w) satisfies gcd(a,b,c,d) = 77 and lcm(a,b,c,d) = n , and t, u, v, w are positive integers. Then (t, u, v, w) represents a set of 16 _distinct_ quadruples that each satisfy the gcd and lcm conditions, namely (a, b, c, d) = (t, u, v, w), (t, u, v, -w), (t, u, -v, w), (t, u, -v, -w), (t, -u, v, w), (t, -u, v, -w), (t, -u, -v, w), (t, -u, -v, -w), (-t, u, v, w), (-t, u, v, -w), (-t, u, -v, w), (-t, u, -v, -w), (-t, -u, v, w), (-t, -u, v, -w), (-t, -u, -v, w), or (-t, -u, -v, -w). This is true for any quadruple (t, u, v, w) of positive integers that satisfies the conditions, hence the total number of quadruples must equal {16 times the number of distinct quadruples of only positive integers}.
@abulfazmehdizada
@abulfazmehdizada Күн бұрын
@@yurenchu answer is 27720
@QuickStories_123
@QuickStories_123 2 күн бұрын
Can I send you a question
@Khaled-kardashev
@Khaled-kardashev 2 күн бұрын
Thanks!:)
@guyhoghton399
@guyhoghton399 2 күн бұрын
Hence _tan⁻¹(1) + tan⁻¹(2) + tan⁻¹(3) = 180°_
@Fereydoon.Shekofte
@Fereydoon.Shekofte 2 күн бұрын
Best wishes for you and your family Professor 🎉🎉😊😊❤❤ In year 2025
@stottpie
@stottpie Күн бұрын
Let's get into the video
@MatondoMaduhu-s9d
@MatondoMaduhu-s9d 2 күн бұрын
We need to carve a statue for this guy because he is really skilled in mathematics. 😂🎉😂🎉🎉😂
@maths01n
@maths01n 2 күн бұрын
Ready for it
@AnesMechekak
@AnesMechekak 2 күн бұрын
thank you teach us some strong induction
@CaioFINNIN
@CaioFINNIN 6 сағат бұрын
This is amazing!!! 🔥🫶😜
@OffiicalComedyClips
@OffiicalComedyClips 2 күн бұрын
"Satisfying" spelt wrong in the title.
@guyhoghton399
@guyhoghton399 2 күн бұрын
*Suppose **_∃n ≥ 4 : _Σ⁽ⁿ⁾ᵢ₌₁{i} = Π⁽ⁿ⁾ᵢ₌₁{i}_* ⇒ _½n(n + 1) = n!_ ⇒ _½(n + 1)!/(n - 1)! = n!_ ⇒ _2n!(n - 1)! = (n + 1)!_ ⇒ _2n[(n - 1)!]² = (n + 1)! = (n + 1)n(n - 1)!_ ⇒ _2(n - 1)! = n + 1 = (n - 1) + 2_ ⇒ _2(n - 2)! = 1 + 2/(n - 1) < 2_ since _n ≥ 4_ ⇒ *_(n - 2)! < 1_** which is impossible for any factorial.* ∴ *_Σ⁽ⁿ⁾ᵢ₌₁{i} ≠ Π⁽ⁿ⁾ᵢ₌₁{i} ∀n ≥ 4_* By inspection equality holds when *_n = 1 or 3 but not 2._*
@koutarousatomi1552
@koutarousatomi1552 18 сағат бұрын
Wrong notation. Why i? That is n.
@elliott2501
@elliott2501 10 сағат бұрын
It’s can be any variable as long as you define it that way.
@topquark22
@topquark22 2 күн бұрын
By inspection, there is only one answer, n=3
@BTRequiemOfficial
@BTRequiemOfficial 2 күн бұрын
n=1
@maxhagenauer24
@maxhagenauer24 2 күн бұрын
What about n = 1?
@thomazsoares1316
@thomazsoares1316 2 күн бұрын
n = (1;3)
@anestismoutafidis4575
@anestismoutafidis4575 Күн бұрын
If i=1, then n(Σ) and n(Π)= {1- ♾️ \♾️ }ℕ
@aaravgamingboy225
@aaravgamingboy225 2 күн бұрын
Sir pls make video on fermat's last theorem ❤ lost of love from India ❤❤
@nanamacapagal8342
@nanamacapagal8342 2 күн бұрын
ATTEMPT: By inspection, N = 1, 3 1 = 1 1 + 2 + 3 = 1 * 2 * 3 = 6 N = 2 doesn't work. 1 + 2 = 3, 1 * 2 = 2 For N >= 4: N! > N(N-1) = N^2 - N = (N^2)/2 + N/2 + (N^2)/2 - 3N/2 >= (N^2)/2 + N/2 + 8 - 6 > (N^2)/2 + N/2 = N(N+1)/2 Which is the sum of all natural numbers up to N. Therefore for all natural N >= 4, 1 + 2 + 3 + ... + N < 1 * 2 * 3 * ... * N, and so the two sides cannot be equal. The only solutions are N = 1 and N = 3.
@robertlunderwood
@robertlunderwood 2 күн бұрын
The one slight issue is the substitution of n = 4 in the (n²-3n)/2. We would just need to show that (n²-3n)/2 is bigger than 0 for n ≥ 4. But that's easy.
@robertveith6383
@robertveith6383 2 күн бұрын
n = 1 *or* 3.
@DarkBoo007
@DarkBoo007 2 күн бұрын
Me: "Obviously its n = 1 or n = 3" *Trying to prove that these are the ONLY values* Me: You got me there LMAO I thought about using induction to prove it since I saw that n = 4 didn't work and I knew for sure n > 4 didn't work either but I was a bit apprehensive knowing that it would've required some work.
@robertveith6383
@robertveith6383 2 күн бұрын
No, it's n = 1 *OR* 3.
@dieuwer5370
@dieuwer5370 2 күн бұрын
By observation: n can be 1 and 3. But not 2, 4....
@robertveith6383
@robertveith6383 2 күн бұрын
No, n can be 1 *or* 3.
@holyshit922
@holyshit922 2 күн бұрын
n=1 and n=3 and in my opinion that's all possibilities
@robertveith6383
@robertveith6383 2 күн бұрын
n = 1 *or* 3
@holyshit922
@holyshit922 2 күн бұрын
@@robertveith6383 you are right, yes n=1 xor n=3 As a fact I can write you that in my language there is a word "albo" which suits the best here and it is equivalent to exclusive or which you don't use
@ErickOliveira-i3w
@ErickOliveira-i3w 2 күн бұрын
log( 1 + 2 + 3 ) = log(1) + log(2) + log(3)
@leonz-g8l
@leonz-g8l 2 күн бұрын
that's actually true
@PrimeNewtons
@PrimeNewtons 2 күн бұрын
Those are not natural numbers
@ErickOliveira-i3w
@ErickOliveira-i3w 9 сағат бұрын
log( j1 x j2 x j3 x ... jn) = log(j1) + log(j2) = log(j3) + ...+ log(jn), from j1 + j2 + j3 + ... + jn = j1 x j2 x j3 x ... jn, log( j1 + j2 + j3 + ... + jn) = log(j1) + log(j2) = log(j3) + ...+ log(jn)
@maxvangulik1988
@maxvangulik1988 Күн бұрын
n!=n(n+1)/2 n!=(n+1)!/2(n-1)! (n-1)!=(n+1)/2 Ř(n)=(n+1)/2 d/dn((n+1)/2)=1/2 Ř'(1)=-ř≈-.57 Ř'(2)=1-ř≈.43 Ř'(3)=3-2ř≈1.86>1/2 Ř(3)=2 4/2=2 the only solutions are n=1 and n=3
@maxvangulik1988
@maxvangulik1988 Күн бұрын
n! | T(n) 1!=1 | T(1)=1 2!=2 | T(2)=3 3!=6 | T(3)=6 4!=24 | T(4)=10 5!=120 | T(5)=15 6!=720 | T(6)=21 7!=5040 | T(7)=28 8!=40320 | T(8)=36 n! is already 3 orders of magnitude larger than T(n)
@Kakarot-kr
@Kakarot-kr 2 күн бұрын
For a, b, c, d, e ∈N If a + b + c + d + e = abcde Find the maximum possible value of max {a, b, c, d, e } Sir pls explain it You've explained it before but there are different solutions at different places and the answer got by u also don't satisfy it
@PrimeNewtons
@PrimeNewtons 2 күн бұрын
I will redo it
@Kakarot-kr
@Kakarot-kr 2 күн бұрын
@@PrimeNewtons thnx a lot ❤️
@robertveith6383
@robertveith6383 2 күн бұрын
This is not partial texting. Spell out "You've " and "you."
@Kakarot-kr
@Kakarot-kr 2 күн бұрын
@@robertveith6383 ok but it's all about conveying information 😅💗💞
@karamsedighi
@karamsedighi 2 күн бұрын
my friend, please answer! ! Are you from South Africa ? I LOVE MANDELA AND BLACK PEOPLE !!!!!
@PrimeNewtons
@PrimeNewtons 2 күн бұрын
Nigeria 🇳🇬
@robertveith6383
@robertveith6383 2 күн бұрын
Original poster, stop yelling in all caps. A color of a person is not to be loved. That is not logical.
@AmilQarayev41
@AmilQarayev41 2 күн бұрын
THE INTEGRAL. 1/(1+x⁴). THE THIRD WAY. WHERE IS ITTT??
@robertveith6383
@robertveith6383 2 күн бұрын
Stop yelling your post in all caps.
@AmilQarayev41
@AmilQarayev41 2 күн бұрын
@robertveith6383 I just wonder what the 3rd way is😞😞
a * b = ab + a + b
21:39
Prime Newtons
Рет қаралды 36 М.
a+b+c+d+e = abcde
12:01
Prime Newtons
Рет қаралды 10 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
Почему Катар богатый? #shorts
0:45
Послезавтра
Рет қаралды 2 МЛН
Hedge fund interview question
14:02
MindYourDecisions
Рет қаралды 75 М.
The Man Who Solved the World’s Most Famous Math Problem
11:14
Newsthink
Рет қаралды 1,1 МЛН
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 134 М.
Can you crack this beautiful equation? - University exam question
18:39
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 285 М.
integral of sqrt of tanx
25:46
Prime Newtons
Рет қаралды 38 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
What the 1869 MIT Entrance Exam Reveals About Math Today
13:51
polymathematic
Рет қаралды 60 М.
I made maps that show time instead of space
10:44
Václav Volhejn
Рет қаралды 178 М.
Did I Just Solve An Unsolved Math Problem?
16:21
CodeParade
Рет қаралды 231 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН