Hi Mr. Ok! I had you as my Algebra 1 teacher back in middle school and remembered you had a KZbin channel, and now I am in AP Calculus BC and your videos come in handy. It’s great to see that your channel has grown so much!
@blackovich Жыл бұрын
I remember you, Ambika! Good to hear from you! He also taught me Coding. Amazing teacher!
@PrimeNewtons Жыл бұрын
Ambika, that is good to know. Please reach out if you need help. I am proud of your commitment to learning. Never stop learning!!!!!!
@PrimeNewtons Жыл бұрын
You too?!! I am blessed.
@DragonX999 Жыл бұрын
@@PrimeNewtonsyou are a goat teacher man
@octs609 Жыл бұрын
I do not know anything of calculus, and man I hated math, but for some odd reason, I can not help, but be so intrigued. I blame my educators for me being so bad at math, but also so uninspired and uninterested, after all I was a child, but I commend you for revitalizing my love for math. Your a godsend mate.
@cheekygnome6 күн бұрын
I love math but I understand what you're saying. His channel is almost like an ASMR channel but you one you can learn from.
@Misteribel Жыл бұрын
The trick you apply by taking the derivative on both sides (9:10), then using the product rule, and get back a component that's itself containing the derivative (W'(x)) really caught me off guard. So simple and so useful! It allows you to find the derivative of the productlog function by inference, using basic high school differentiation rules and never really differentiating the function itself directly.
@PrimeNewtons Жыл бұрын
Great tip!
@looney102311 ай бұрын
Implicit differentiation is really powerful. You can use it to find the derivative of the inverse of any function working solely with the function itself.
@Musterkartoffel5 ай бұрын
Blew my mind too . The most obvious often is the most unseeable
@johnsellers5818 Жыл бұрын
I've taken many math courses up through graduate school and you are the best teacher I've encountered.
@koenth2359 Жыл бұрын
Your teaching skills are beyond normal!
@PrimeNewtons Жыл бұрын
Glad you think so!
@deathracoffee Жыл бұрын
I just wanted to say, I really like your voice. Keep on being awesome
@weo9473 Жыл бұрын
Next - integration of Lambert w function
@indescribablecardinal6571 Жыл бұрын
There is a cool equation of an integral of any function given by the integral of its inverse. And the integral of xe^x is trivial 🎉
@rolling_metalmatica Жыл бұрын
Taylor Series Expansion for the Lambert W Function would be cool
@T1Pack Жыл бұрын
0⅘
@Anmol_Sinha Жыл бұрын
@@indescribablecardinal6571do you mean that integral of f(x) wrt x = integral of f-1(x) wrt y? The comment asked for the integral of f-1(x) wrt x. To find the integral we can take the last step in prime newton's video, cross multiply for W(x) and integrate. We will get the answer already mentioned in this comment chain
@АннаСивер-г8м Жыл бұрын
There is a formula for integrating an inverse of a function,and W is just an inverse of xe^x,that wouldn't be that hard.
@remopellegrino8961 Жыл бұрын
KZbin needs more Math people like you and Michael Penn
@rhc-weinkontore.k.71183 ай бұрын
This is fun. Prime Newtons, you are a really great teacher.
@laman8914 Жыл бұрын
We love how this dude is lecturing Math. Step-by-step. I have watched a number of Lambert W-function clips and they all start right away. But here, you are introduced to the fundamentals first and then how they apply to the actual problem. So, even if you have never heard of it, you can still follow the explanation. We wonder if he has this all hidden in his hat.
@rivalhunters4666 Жыл бұрын
aah, u forgot the bracket at the end MY OCD IS TRIGGERED. A very good video :)
@kusuosaiki367 Жыл бұрын
I have watched few of your videos. As a Math student, I really find these interesting. Keep it up good sir.
@Ron_DeForest Жыл бұрын
I have to say that’s an amazingly fast turnaround. Request a video one day, get it the next. Wasn’t quite what I was hoping though. Was really hoping for a deep dive into how it actually works. There’s more to it besides being very convenient. If you use the function on a calculator it comes up with an answer.
@johannaselbrun Жыл бұрын
Gracias por apoyarme y me gusta tu trabajo mucho
@K.gül7 ай бұрын
goated teacher man, great explanation
@EvilSandwich Жыл бұрын
Thank you. So many people covered this before but they tend to just glaze over a lot of the simplification. Which usually would be fine, but for a function like this, it just feels like their skipping steps and I'm grateful you took your time and explained every step. Any plans to explain how to integrate W(x) in a future video too?
@PrimeNewtons Жыл бұрын
Yes
@sushilchopra77083 ай бұрын
Nice work indeed
@jadenredd Жыл бұрын
good video today unc 👍🏾
@MASHabibi-d2d Жыл бұрын
از شما وبزنا شما متشکرم
@jonathanv.hoffmann3089 Жыл бұрын
🎉🎉🎉
@VincentGPT-lol Жыл бұрын
Interesting lesson today 🤓✍️
@ikhsanmnoor8589 Жыл бұрын
Then I meet this really good explanation
@ferretcatcher23778 ай бұрын
This is elegant mathematics. ❤ the use of the chalkboard. Reminds me of my salad days at university.
@AzharLatif-d4z Жыл бұрын
Admire your love for Mathematics. This runs through your veins. This in turn is a reflection of your love for every learner under your wings. Here we could revisit Kuert Goedel to probe his incompleteness theorem which classifies three possibilities for solutions given Lambert W Function. No solution exists, and new tools are to be discovered. Lambert W Function only offers an endless loop of no empirical value. Stay Blessed.
@MASHabibi-d2d Жыл бұрын
Thanks for an other video...master
@donsena20138 ай бұрын
Quite an analysis !
@Ferraco05 Жыл бұрын
The "third" version really just gives you back the first version. On another note, you could write a "fourth" version: d/dx [ln(W(x))] = 1/[x(1+W(x))]
@anglaismoyen Жыл бұрын
You forgot to close the bracket at the end. Faith in this channel destroyed. Nah, just kidding. Beautiful derivative.
@PrimeNewtons Жыл бұрын
Thanks for keeping the faith 🤠
@brian554xx Жыл бұрын
) I felt compelled to indicate that.
@shshshshsh7612 Жыл бұрын
for the third version, we see W'(x)(e^W(x) + W(x)e^W(x)) = 1 but W(x)e^W(x) = x by definition, so W'(x)(e^W(x) + x) = 1. so W'(x) = 1/(e^W(x) + x)
@CalculusIsFun1 Жыл бұрын
Alternatively you could have used the formula for inverse functions derivative based on the regular function. If y = f^-1(x) then f(y) = x 1 = f’(y) * dy/dx Dy/dx = 1/f’(y) y = f^-1(x) Therefore the derivative of any inverse function can be represented using its none inverse counterpart as dy/dx = 1/f’(f^-1(x)) Let apply this to lambert. The derivative of xe^x = e^x(1 + x) so d/dx(w(x)) = 1/f’(w(x)) where f’ is e^x(1 + x) So derivative of the lambert function is 1/(e^w(x) * (1 + w(x))
@senkum1000 Жыл бұрын
I ALSO MADE THAT FORMULA
@giorgiobarchiesi500311 ай бұрын
Tank you for the video! But I wonder if it would make sense using the rule of the derivative of the inverse of a function. If I remember correctly, it should be the reciprocal of the derivative of the function. For a monotone function like this, it should work just fine.
@PrimeNewtons11 ай бұрын
Yes. That works, too.
@chengkaigoh5101 Жыл бұрын
Is this possible by first principle?
@nanamacapagal8342 Жыл бұрын
You can use this definition: lim_a->x (W(a) - W(x))/(a-x) Then substitute a = be^b x = ye^y On one specific branch at a time this substitution is okay Then it's lim_b->y (b - y)/(be^b - ye^y) = 1 / lim_b->y (be^b - ye^y)/(b - y) = 1/ (d/dy (ye^y)) So if you can get the derivative of xe^x by first principles then you're all clear This actually generalizes: d/dx f¯¹(x) = 1/f'(f¯1(x))
@wafflesaucey7 ай бұрын
@@nanamacapagal8342would using this formula cover both of the real branches of the W function?
@mazabayidolazi Жыл бұрын
Good
@overlordprincekhan Жыл бұрын
TBH, Another elegant solution would be to use taylor series of e^x and multiplying it with x would give you lambert w function. Then differentiating the series should yield the derivative of Lambert W function
@inceden_Matematik Жыл бұрын
Soo good :)))
@davefried Жыл бұрын
how would you write the answer in terms of the original equation that the lambert function is based upon?
@amtep Жыл бұрын
You could also instead of factoring out the e^W(x), replace the W(x)e^W(x) with just x. Then you get 1 / (e^W(x) + x)
@TheLukeLsd Жыл бұрын
eu faço deste jeito também. é mais fácil.
@Musterkartoffel5 ай бұрын
I think thats the third version (but I also thought that way)
@priyansharma1512 Жыл бұрын
Great vid as always but that bracket missing from the second solution has me so annoyed 😭😭
@LEDSlights2 ай бұрын
I love your smile.
@KannaKamui2100010 ай бұрын
derivative of W(x) is aesy, it's W'(x) ! Apart of that little joke, thanks for sharing us your knowledge !
@aguyontheinternet8436 Жыл бұрын
12:47 if you did that and cancelled out the W(x) on the top and bottom, you'd end up with the first equation.
@lazaredurand66757 ай бұрын
"Never stop learning..." is actualy a wrong slogan because IA can actualy learn non-stop and they will never be living being. The good one would be "Never stop to search/try/be curious". IA will never be curious, curiosity is the proof that you are living.
@vnms- Жыл бұрын
I just did: W(x) = y -> x = ye^y then derived, so: 1 = dy/dx • e^y + ye^y •dy/dx -> 1 = dy/dx(e^y + ye^y -> dy/dx = 1\(e^y(1+y) Since y = W(x) and dy/dx = W’(x) that means: W’(x) = 1/(e^W(x)(1+W(x))
@suyunbek1399 Жыл бұрын
how do you use the derivative of the inverse function formula here? derivative of x*e^x is (x+1)*e^x then what?
@anotherelvis Жыл бұрын
If f(x) is the inverse of W(x), then the formula for the derivative of the inverse gives us W'(x)=1/f'(W(x)) Now insert f'(x) = (1+x)*e^x to get W'(x)=1/((1+W(x))*e^W(x))
@RileyGallagher-ce4rq10 ай бұрын
You can also do this: (I'm letting y = W(x) for the sake of not writing W(x) 7 times) dy/dx = (dx/dy)⁻¹ = [d(yeʸ)/dy]⁻¹ = 1/eʸ(y+1)
@DroughtBee Жыл бұрын
I really don’t like how you didn’t close your parentheses at the end on the denominator. Otherwise great video!
@PrimeNewtons Жыл бұрын
🤣 Apologies
@dhiaguerfi2602 Жыл бұрын
6:44 f must be bijective
@salvatorecharney8180 Жыл бұрын
Because [W(x)]e^[W(x)] is just x, can you write the final answer: 1/(e^[W(x)] + [W(x)]e^[W(x)]) As this: 1/(e^[W(x)] + x)
@usernameisamyth Жыл бұрын
@navyntune81585 ай бұрын
Third derivative: W'(x) = 1/(e^W(x) + 1)
@alexandruandercou9851 Жыл бұрын
W function , it just gives you back your ex 😂
@donwald3436 Жыл бұрын
Are you related to Omar Epps you could be his brother lol.