Proof of the Fundamental Theorem of Calculus (the one with differentiation)

  Рет қаралды 37,706

Dr Peyam

Dr Peyam

Күн бұрын

In this video, I give the classical proof of the fundamental theorem of calculus, the version which says that the derivative of the integral is just the function itself (this is sometimes called FTC 1). There are some epsilon-deltas involved, but not too much. Check out my other FTC video if you want to see a clever proof of the other version :)

Пікірлер: 77
@TheYoshi1990
@TheYoshi1990 7 жыл бұрын
it purely motivates me to go further with maths when I see the undying passion of dr Peyam, this channel is such a joy, please keep going :)
@chill4r585
@chill4r585 8 ай бұрын
Hi Dr Peyam, Id like to ask whether this can be proven with the mean value theorem and just be as valid? Mean value theorem + Squeeze theorem. Thanks!
@technicbrasil
@technicbrasil 7 жыл бұрын
It is so nice to see all the passion you have for math, I use to think math as just a high school subject I had to pass but after getting into the world of calculus and seeing great mathematicians such as u doctor Peyam I changed my mind and started enjoying math in a way a cant survive a day without doing a problem just for fun Keep up with the nice work
@Jonathan_Jamps
@Jonathan_Jamps 7 жыл бұрын
euardo balint the problem of many students from Brasil is that they don't study to Understand Math...they study to get a high score...
@someone229
@someone229 6 жыл бұрын
+euardo balint Me too😝
@edwardo2678
@edwardo2678 7 жыл бұрын
I can't wait till I reach a point in my mathematics career where I can full understand these sorts of things
@7necromancer
@7necromancer 7 жыл бұрын
Could you do a video about any research you have done in Mathematics and about your doctoral thesis? Thanks!
@lakshaygupta9061
@lakshaygupta9061 5 жыл бұрын
I second that
@thedudethatneveruploads2617
@thedudethatneveruploads2617 3 жыл бұрын
I third that
@armaan7381
@armaan7381 9 ай бұрын
I nth that
@Fat_Fit-ls3hx
@Fat_Fit-ls3hx 9 ай бұрын
I nth^nth that
@chill4r585
@chill4r585 8 ай бұрын
Hi Dr Peyam, Id like to ask whether this can be proven with the mean value theorem and just be as valid? Mean value theorem + Squeeze theorem. Thanks!
@claytoncoe838
@claytoncoe838 6 жыл бұрын
My AP calculus teacher (who retired the day after our final) always called it the "Little Fundamental Theorem of Calculus,"because it's used less often and there were ambiguities with calling which FTC 1 and which one FTC 2 in the textbook.
@drpeyam
@drpeyam 6 жыл бұрын
That’s so adorable!!!
@mohammedal-haddad2652
@mohammedal-haddad2652 5 жыл бұрын
Explaining the obvious is the most difficult. Thank you for this great video.
@Galileo2pi
@Galileo2pi 7 жыл бұрын
I love this sort of videos, keep going please. I love maths and phisics
@naming_is_harddd
@naming_is_harddd 8 ай бұрын
At 5:40, instead of mentioning the definition of the Riemann integral, you can instead draw the graph y=1 and calculate the area manually as the area is just a rectangle. In my opinion this is more rigourous
@mathunt1130
@mathunt1130 3 жыл бұрын
There is a slick way to get the limit by using the squeeze principle. with upper bound A_U=f(x+h)h, and lower bound A_L=f(x)h, divide by h and take the limit as h tends to zero to get that the derivative of the integral is the function itself.
@fountainovaphilosopher8112
@fountainovaphilosopher8112 7 жыл бұрын
(Doesn't like epsilon delta proofs, but loves ur videos)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
agree!
@dgrandlapinblanc
@dgrandlapinblanc 5 жыл бұрын
Excellent Dr Peyam ! I have seen for the the "increase" of the function cos(pi/2*t). Thank you very much.
@chill4r585
@chill4r585 8 ай бұрын
Hi Dr Peyam, Id like to ask whether this can be proven with the mean value theorem and just be as valid? Mean value theorem + Squeeze theorem. Thanks!
@TheMauror22
@TheMauror22 7 жыл бұрын
This is the best proof ever!!!
@michelkhoury1470
@michelkhoury1470 6 жыл бұрын
Nice theorem and nice proof doctor. You can prove this also by supposing that F is an antiderivate of f and when you get the limit of integral of f(t) from x to x+h, over h, from the beginning of your proof, it's the limit of (F(x+h)-F(x))/h, and it's in fact the derivate of F(x), so it's f(x)
@willnewman9783
@willnewman9783 6 жыл бұрын
You are assuming the result in this video in your proof. You are saying that you can calculate the integral as a difference in anti derivatives, but the fact that you can do that is what the fundamental theorem of calculus is saying.
@martinepstein9826
@martinepstein9826 4 жыл бұрын
I think this way is a bit easier. Let m and M be the min and max of f on the interval [x, x+h]. Then the integral of f over that interval is bounded between h*m and h*M. Hence the integral is equal to c*h for some c between m and M, and the derivative is g'(x) = lim_(h -> 0) (c*h)/h = lim_(h -> 0) c Note that m, M, and c depend on h and c is squeezed between m and M. One definition of continuity is that the oscillation at x is 0; in other words m and M approach x as h -> 0. Hence lim_(h -> 0) c = x
@martinepstein9826
@martinepstein9826 4 жыл бұрын
This method has nice continuity with your other FTC video since it uses a different sort of mean value theorem.
@bhaskardas8145
@bhaskardas8145 6 жыл бұрын
The integral expression of f(x) should have the limit as h goes to zero. Then you can subtract the two integrals while subtracting f(x) from g'(x).
@nojcasica
@nojcasica 9 ай бұрын
Just look how happy he is while explaining the proof. I agree that math majors rejoice every time they obtain that epsilon on proofs, lol.
@slavinojunepri7648
@slavinojunepri7648 Жыл бұрын
Great proof based on the continuity of the integrand. What if f was not continuous but simply integrable?
@drpeyam
@drpeyam Жыл бұрын
It still holds but in a measure theory sense! Look up Lebesgue differentiation theorem!
@slavinojunepri7648
@slavinojunepri7648 Жыл бұрын
@@drpeyam I will definitely look at the Lebesgue differential theorem to convince myself. Thank you!
@РайанКупер-э4о
@РайанКупер-э4о 6 ай бұрын
It would be interesting to know how to prove it with infinitesimals instead of limits. The structure of argument should be the same I guess.
@LegendOfMurray
@LegendOfMurray 7 жыл бұрын
very nice
@MrRyanroberson1
@MrRyanroberson1 7 жыл бұрын
i can't prove it because my understanding is /so/ visual that i could stop by 3 minutes in, as h goes to 0, the height of the rectangle approximating int(x+h)-int(x) (which is h*f(x)) approaches precisely f(x) (being of the area h*f(x) and width h), almost the same as the proof of derivatives actually.
@hOREP245
@hOREP245 6 жыл бұрын
Yeah, but can you prove that it approaches precisely f(x)?
@richardrobertson1886
@richardrobertson1886 Жыл бұрын
The part where using the graph to see that you can change the difference of the integrals into a single integral from x to x+h seems kind of hand wavy. It makes sense logically but it doesn’t seem like you proved in a rigorous fashion that the step was allowed.
@drpeyam
@drpeyam Жыл бұрын
You can prove it using integral from a to b = int a to c + int c to b
@hjdbr1094
@hjdbr1094 4 жыл бұрын
Couldn't you have used the Squeeze Theorem using the local minimum and maximum of f(t) for t∈[x,x+h]?
@chill4r585
@chill4r585 8 ай бұрын
and the mean value theorem?
@ItumelengS
@ItumelengS 5 жыл бұрын
Mr. Professor Bagenda back at UFS
@jameschen2308
@jameschen2308 4 жыл бұрын
Amazing. Major applause
@frdj3401
@frdj3401 5 жыл бұрын
Why don't you have not use the diffrestiobality
@jihanhamdan5465
@jihanhamdan5465 7 жыл бұрын
Do u a video about this epsilon-delta stuff that am not really getting the idea behind !
@drpeyam
@drpeyam 7 жыл бұрын
Jihan Hamdan There are some epsilon-delta videos on my channel, and some more on blackpenredpen’s channel!
@Burningfish01
@Burningfish01 4 жыл бұрын
No idea when epsilon and delta came out.
@kylejohnson8447
@kylejohnson8447 3 жыл бұрын
Can you prove the definition you mentioned at 5:40
@drpeyam
@drpeyam 3 жыл бұрын
It’s the area of a rectangle with base [x,x+h] and height 1
@null2694
@null2694 7 жыл бұрын
Thank you so much for this video! :D
@andreapaps
@andreapaps 4 ай бұрын
What a great proof
@vukstojiljkovic7181
@vukstojiljkovic7181 6 жыл бұрын
can you do a video when a function is Uniform continuity, i really dont get it.
@drpeyam
@drpeyam 6 жыл бұрын
Maybe this will help, although it doesn’t 100% answer your question: Covering Compactness and Uniform Continuity kzbin.info/www/bejne/rpq6mq2tn9WnbtE
@vukstojiljkovic7181
@vukstojiljkovic7181 6 жыл бұрын
@@drpeyam Thank you!! I'll take a look!
@jwyliecullick8976
@jwyliecullick8976 4 жыл бұрын
Content that independently justifies KZbin.
@loganreina2290
@loganreina2290 7 жыл бұрын
f just has to be continuous not uniformly continuous, right?
@drpeyam
@drpeyam 7 жыл бұрын
Logan Reina Just continuous, because notice that we've just used continuity at x, and we didn't really care what happens away from x.
@drpeyam
@drpeyam 7 жыл бұрын
Logan Reina Oh, also a continuous function on a compact set like [a,b] is automatically uniformly continuous, so no worries about that :)
@unknownaccount3655
@unknownaccount3655 7 жыл бұрын
At this moment, there are 5^(5-5/5) visualizations😏
@SebastianHirsch
@SebastianHirsch 4 жыл бұрын
Ein schöner Beweis!
@drpeyam
@drpeyam 4 жыл бұрын
Danke!
@mohumedzakaria4713
@mohumedzakaria4713 7 жыл бұрын
sorry,but when newton and leibniz discovered the fundamental theorem of calculus.the limit isn't discovered yet
@CharlesPanigeo
@CharlesPanigeo 6 жыл бұрын
Before weierstrass formalized limits, the entire field of calculus wasn't considered rigorous mathematics yet, so formalizing all the proofs in terms of the concept that makes calculus rigorous is definitely the way to go.
@PackSciences
@PackSciences 7 жыл бұрын
Epsilon-delta proofs are horrible in general :(
@Czeckie
@Czeckie 6 жыл бұрын
why? i didn't like them as student, but now i appreciate them. They are almost like a computation - in that sense you start doing something not sure what to expect, but the problem guides you. There are elegant and beautiful proofs, that teach nothing. Epsilon-delta proofs are hands-on. At least, that's my opinion.
@aldurthedrowshade
@aldurthedrowshade 7 жыл бұрын
During step 2, what is the purpose of equaling zero?
@drpeyam
@drpeyam 7 жыл бұрын
neg atory It's to prep for the epsilon-delta part; I want to show that the limit is 0, hence use an epsilon-delta argument. Once the limit of the difference is 0, the original limit is f(x), which is what we want.
@aldurthedrowshade
@aldurthedrowshade 7 жыл бұрын
Thank you Dr. Payem!
@Matchless_gift
@Matchless_gift 6 жыл бұрын
Yaaaaaa......got €.🏃‍♂️🏃‍♂️🏃‍♂️🏃‍♂️🏃‍♂️
@jumperluk6267
@jumperluk6267 7 жыл бұрын
Why do i get infront of every single video by you an ad for a netflix show called „stranger things“? Coincidence? *i think not* edit: i hope that „stranger“ means something close to „strange“ in this context. I hope it doesnt mean something like „stalker“ or such things.. My english is not the best so im very sorry if its offensive or something like that... Anyways.. nice video! :D
@davislim56
@davislim56 6 жыл бұрын
This comment is gonna get pinned. . . . . . . . Why does this comment have 100 likes?
@antipro85
@antipro85 9 ай бұрын
Good try...
@renesperb
@renesperb Жыл бұрын
I prefer a more geometric proof: if look at the area g[x + h]- g[x] you can approximate it by a parallelogram ,giving h*(f[x]+f[x+h])/2. Then , for h -> 0 you get f[x] .
@renesperb
@renesperb Жыл бұрын
The expression ''parallelogram '' is not correct , but the approximation h*(f[x]+f[x+h])/2 for the area is o.k.. Hence after division by h ,and h -> 0 you find f[x] .
Proof of the Fundamental Theorem of Calculus
18:59
Dr Peyam
Рет қаралды 33 М.
Fundamental Theorem of Calculus 1  |  Geometric Idea + Chain Rule Example
11:04
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Germany | Can you solve this? | Math Olympiad
11:41
Master T Maths Class
Рет қаралды 1,7 М.
Proof of the Chain Rule
16:05
Dr Peyam
Рет қаралды 17 М.
The Fundamental Theorem of Calculus - Proof
14:16
slcmath@pc
Рет қаралды 79 М.
The essence of calculus
17:05
3Blue1Brown
Рет қаралды 10 МЛН
The Fundamental Theorem of Calculus: Redefining Integration
9:38
Professor Dave Explains
Рет қаралды 216 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
Fundamental Theorem of Calculus Explained | Outlier.org
16:27
OutlierOrg
Рет қаралды 424 М.