Has to be the best physics tutorial I've seen on youtube and it's way better than most profs do in class.
@jackoutsidedabox76182 жыл бұрын
🙋
@NomenNominandum10 жыл бұрын
The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction. - Sidney Coleman -
@carororororo3 жыл бұрын
this is an old video but brooo you're saving my life I have a quantum mechanics midterm and this makes so much sense yaaay
@carororororo3 жыл бұрын
I passed it!!! wOOP WOOP
@ifrazali30527 ай бұрын
@@carororororoCongratulations
@sphericalchicken11 жыл бұрын
The commutator of two operators is defined [A,B] = AB - BA, so -[A,B] = [B,A], so whether you get [x,p] or [p,x] with a negative somewhere else doesn't really change the result, just the way it's expressed.
@lizXP13 жыл бұрын
This is by far, one if the best quantum mechanics explanations I have come across on youtube
@ta4h1r22 жыл бұрын
QM by Griffiths uses a similar style to this lecture.
@aronhegedus8 жыл бұрын
This whole video is very professionally done, I love how neat your writing is, and how clearly you relay the information. Thank you!
@Gismho3 жыл бұрын
Excellent series!!! Thank you Prof. Carlson. Extremely well explained. I'm glued to this series!!!!
@josephhamilton64192 жыл бұрын
Excellent!! How logical and clear this lecture is. Appreciate it a lot!
@luisbreva61224 жыл бұрын
Do conmutators have something to do with Poisson brackets?
@Steven224535 жыл бұрын
You're a lifesaver, that's all I have to say.
@fornasm2 ай бұрын
WOW, I had already done this, but here it is better done and clearer. 1/2 QFT is in this lesson. well done thanks!!
@sibusisiweradebe78425 жыл бұрын
I have a quantum mechanics test tomorrow and you just saved my life
@andresarteagavillarreal65575 жыл бұрын
me too
@beckybrooks12264 жыл бұрын
And one year later, I'm in the same boat :)
@carororororo3 жыл бұрын
me too lmao
@dzarren8 жыл бұрын
At 32:18 you say that the denominator is equal to one, so we can ignore it. You say its because sqrt(n+1) where n is zero so the denominator is 1. But actually it's because the denominator would be sqrt(1!) from the formula for PSI_ n.
@buddydiamond8736 Жыл бұрын
I really wish you were my teacher and not who I have now... this was a question on the test and I was completely lost... anyways, I'm very grateful this video exists.
@learngermanwithvanessa2 жыл бұрын
18:08 why not +1/2 a_+ ψ?
@averagecornenjoyer634811 ай бұрын
why can you write a+ in the left side? isn't that implying that the ladder and the hamiltonian commute? (which they seem not to)
@the-fantabulous-g4 жыл бұрын
36:42 For Check Your Understanding, do we have [x, T] = h^2/m * d/dx as our answer? Or am I wrong in some parts
@Myzydow4 жыл бұрын
I got the same, think it’s correct.( Acting on some “psi”wave function
@pixelberrychoicespodcast58613 жыл бұрын
Hey the answer is zero @pixelberrychoicespodcast on instagram you can ask me for the solution
@manibharathi13012 жыл бұрын
I got the same
@UcranianoUKR11 жыл бұрын
if you had factored out +imw instead of -imw you would end up with [p,x] and get a different results, how did you know that you want to get [x,p]?
@ancientmemer54097 жыл бұрын
While calculating the lowest energy psi(0), where is "i" of the a- ladder operator.
@dyer3087 жыл бұрын
Abhishek Ghosh original a operator has -i*p hat , but p hat operator is equal to -ih d/dx thus -i*i =1 and you get h d/dx
@erenozdemir55284 жыл бұрын
Why is there no minus sign in front of p at 5:37.
@HankGussman3 жыл бұрын
Look at the definition of momentum operator : -i*h-bar*(d/dx)
@JohnVKaravitis5 жыл бұрын
Superb quantum mechanics videos. Your hard work is appreciated.
@hendriaditjandra64184 жыл бұрын
Brant, just for this time, I don't fully understand the whole concept of ladder operator. Is ladder operator used to reconstruct the Schrodinger solution or just simplify it ?
@HankGussman4 жыл бұрын
From 21:50 onwards, if psi is a solution then a+ ladder operator acting on psi is another solution with higher enegy = h-bar*omega. You can again apply a+ ladder operator on this new solution to get yet another solution of higher energy level with energy difference of h-bar*omega again. The same process can repeated with a- ladder operators to get soltuions with lower energy levels & energy difference being h-bar*omega again.
@5UV1NEET4 жыл бұрын
How was the normalisation constant calculated at 28.49? Can anyone be kind enough to explain the calculation. I thought it would solving the integral from -infinity to infinity of psi*psi = 1. Are those our integral limits here? Not sure what domain this has been in.
@ScroogeMcCat5 ай бұрын
As far as I can tell, the domain is from -infinity to infinity, and then you get A^2 times the integral from -infinity to infinity of e^(-mw*x^2/h)dx (squaring the e^(-mw*x^2/2h) cancels out that two in the denominator), and then that becomes a gaussian integral (integral from -infinity to infinity of e^(-ax^2) dx is equal to sqrt(pi/a)), which in this case a is equal to mw/h, which gives that A^2*sqrt(pi*h/mw)=1 => A^2=sqrt(mw/pi*h) => A=(mw/pi*h)^1/4. Correct me if I made a mistake. Here is the source: en.wikipedia.org/wiki/Gaussian_integral
@davidhand97214 жыл бұрын
I don't get why the ladder operator is quantized when omega is a continuous variable. If I choose a different omega, then my ladder is totally different, so that for any energy, I can find an omega that allows it. What am I missing here?
@davidhand97219 ай бұрын
When you write p-hat squared psi, does that mean p-hat(p-hat(psi)) or does it mean (p-hat(psi))(p-hat(psi)), i.e. squared in the traditional sense. For that matter, it looks like you're using (x-hat)(p-hat)psi = x-hat(p-hat(psi)), otherwise they would commute. But earlier, you definitely treated (p-hat)(p-hat) as p-hat squared. Can someone clarify please?
@lohchoonhong45086 жыл бұрын
at 32.26 example, may I know why is (n+1)^1/2 instead of (n)^1/2 as the formula as shown at 31.54?
@abt15802 жыл бұрын
Hey Brant (Dr. Carlson), Can you provide the solutions to the test you knowledge problem? Thanks.
@rustman19847 жыл бұрын
Brant Carlson Thanks for the video. I think I am somewhat understanding. However you give (n + 1)^1/2 as the coefficient for psi(n+1) when doing a+psi. Could you explain/ show what that really looks like in terms of the actually numbers/variables? I'm trying to do this and make the n = 2 wave function from the n=0 wave function using the raising operator twice.
@samaviarafiq16927 жыл бұрын
Can someone tell me that how at point 5:10 he solve that (m)???...When he take out (m) from the equation than how can he write it below again with the omega and x...
@dyer3087 жыл бұрын
Samavia Rafiq he writes it as m^2 , so the m taken out in denominator will cancel one of the m in m^2 to give original m
@ajmeriamreenchowdhury933 Жыл бұрын
This tutorial was incredibly good!!!
@thetimbo2110 жыл бұрын
What happened to the imaginary number in the last derivation of psi(1)?
@MiguelGarcia-zx1qj3 жыл бұрын
I've calculated several of the psi[n], and drawn a graph of each psi[n]^2 (no complex numbers here, to get the probability density rho(x)). Said graphs are VERY interesting (I don't know if it's possible to put them here).
@vineethnarayan51594 жыл бұрын
any non-physics students here , learning out of sheer interest here like me??
@Salmanul_4 жыл бұрын
yeah :)
@Salmanul_4 жыл бұрын
@Renzo Scriber lol yes!!
@menoetius81824 жыл бұрын
If you are learning physics you are a physics student. What makes you a physics student is that you are studying physics, not that you get assigned homework.
@Salmanul_4 жыл бұрын
@@menoetius8182 yeah haha, but I think they meant physics majors
@carororororo3 жыл бұрын
i respect you guys so much
@anjalishankar8 жыл бұрын
@ Brant carlson : can you please explain schimidt orthogonalization process?
@delsub210 жыл бұрын
pls someone explain the logic of what he said from 25.00, esp the curving away dialogue at 25.25
@bodhilandry-stahl48314 жыл бұрын
Consider a coordinate plane considering psi(x) on the vertical axis and x on the horizontal axis. For this problem with a potential v(x) =mw^2x^2, the most obvious location to construct the origin is where v(x) = 0 and v(0) = 0. The only valid solutions are physical solutions which force the conditions for psi(x) and x to be greater than 0.
@tamkhong89399 жыл бұрын
Hello, You can give me the software that you use it to write on the screen? Thanks alot.
@koenth23594 жыл бұрын
18:40. 'Now you notice I have an A+ here and an A+ here', that sounds so smug!
@y3rzhan4 жыл бұрын
Dear Brant, could not you please tell me what kind of tablet/pen do you have and what is the software you use? I like that you do have a cursor on your videos and wanted to buy similar one)
@SWiSHRoyal11 жыл бұрын
Thanks! Saved my exam.
@joannalada57510 жыл бұрын
Does anyone know where to find an explanation of how to find the integral when calculating the coefficient of the e term for the equation of the ground state wave function? Thank you! These videos are so helpful!!!
@ifrazali30527 ай бұрын
I know I am late but it is just applying normalization Condition in Which you have to solve for Normalization coefficient.
@Abhijitdas87103 жыл бұрын
Can anyone explain 25:40 in a little detail...??
@ta4h1r22 жыл бұрын
If E < V(x), then the signs of the gradients in Schrodinger's equation indicate that the wave function blows up to infinity. But this is not allowed, for a wave function ought to be normalizable (i.e., the function should approach 0 as x tends to +/- infinity), in order to ensure that the area below that wave function, or the probability of finding the particle in a given state, remains finite. Therefore, there must be some minimum energy, i.e., at the ground state, below which we can no longer apply the lowering operator (a_) to generate meaningful (or normalizable) wave functions. It is interesting to think about this constraint from the perspective that no particle can physically exist with an energy below some minimum threshold energy, determined in this case by V(x). In other words, particles should have some little bit of energy at least to maintain its mass.
@saramounata2048 Жыл бұрын
Thank you for existing!
@MmC-vn1mf9 жыл бұрын
my homework is complete
@BunchaFrames6 жыл бұрын
Same :)
@starstuff112 жыл бұрын
[x, T] comes out to be (i h_bar p/m) ?
@algerchenlavernkordom315110 жыл бұрын
when you factored out 1/2m how can you still have another m in the equation left???
@buddydiamond8736 Жыл бұрын
Can anyone confirm if I got the right answer at the end of the video? I got (ħ²/m)dΨ/dx... should I make this simpler?
@Joey47600 Жыл бұрын
i got the same result, i don't think you can simplify it though
@yoshii8599 Жыл бұрын
still the BEST video
@souravthapliyal90174 жыл бұрын
Ans plz of question at the end 36:57
@katgirl30002 жыл бұрын
Very timely! I need to see this! :)
@jasonhe69479 жыл бұрын
Thank you. It's really a pretty good explanation. It helps me figure out lots of questions.
@أزهارالحوامدة8 жыл бұрын
جزاك الله خير
@roonilwazlib81374 жыл бұрын
good and brief explanation!!
@文文-z9w10 жыл бұрын
I don't see how a+a- gives you a different result. When you just switch the position of the negative sign, doesn't product foil out to p^2 + mwx^2 -imw[x,p] just like in the derivation here?
@文文-z9w10 жыл бұрын
That is, a+a- = (-ip + mwx)(ip + mwx), which factors the same way, right?
@benninjin221510 жыл бұрын
[a+,a-]=[a-,a+]=1 (a+a-) is not equal to (a-a+)
@akasharora80192 жыл бұрын
Sir which book do u follow
@debatoshs90492 ай бұрын
Introduction to Quantum Mechanics by D.J. Griffith
@clopensets61044 жыл бұрын
I still prefer the power-series solution. It just seems more intuitive to me than abstract 'ladder operators'!!!
@SS-tu6kc4 жыл бұрын
Same. We covered the QHO in my quantum 1 course over the summer, and now my quantum 2 course at a different college is covering it to start the quarter and I still can’t fully wrap my head around the purpose of ladder operators other than to present a seemingly more “elegant” solution to the problem
@clopensets61043 жыл бұрын
@@SS-tu6kc Actually, being slightly smarter now, I understand that Ladder Operators play a CRUCIAL role in Quantum Field theory, you can essentially construct canonical quantization based off of ladder operators (plus some abstract algebra).
@shabdosargam20205 жыл бұрын
Thank you so much sir ..now it is clear to me
@Mungop3898 жыл бұрын
excellent lecture
@jasonyao37533 жыл бұрын
So it turns out that I had a choice between reading the same section 100 times or watching this video once. I regret not choosing the ladder 😉
@TheZobot19 жыл бұрын
Thanks for this amazing lecture!
@zeeshankhalid3798 жыл бұрын
good lecture. thanks for upload
@kaltoii9 жыл бұрын
pretty good explanation, thank you!
@rafa3lico7 жыл бұрын
'kissing the axis' but your making it kiss the 'E' line... Was this a mistake? If it tends to a positive value E, it's not normalizable
@starstuff112 жыл бұрын
Thank you for this 🙏 Much appreciated.
@imamulhaque49585 жыл бұрын
Thank you so much sir..It helps me a lot
@AngelinaGallego7 жыл бұрын
This is amazing thank you!
@beyondscience0046 жыл бұрын
Hey,i've watched you solve but i think you did a small mixed up at 5:37,the expression of your p operator is not correct,the p operator is equal to the momentum p divided by square root of mass times omega times h bar... Verify that please... But later on your expressions are correct for the anihilation operator and so on!!
@sarakrauss18959 жыл бұрын
thank you very clear and helpful.
@samuelj58906 жыл бұрын
sick vid!!! very infromative
@dutchman244111 ай бұрын
you mixed up minus and plus signs in the opperators, but ill let it slide ;)
@96Lamo6 жыл бұрын
That's awesome!! THANK YOU.
@schemistry.74064 жыл бұрын
Nice class
@jimdogma153711 жыл бұрын
There's so much cleverness in this video that I was left completely confused :-/
@benninjin221510 жыл бұрын
2clever4me
@surojpaul14 Жыл бұрын
Thanks 😌
@Zbeat00110 жыл бұрын
It's very very usefull! Thank you! I work on the possible applications of quantum entanglement like a circuit QED model. If you know something about that I really like to see that.
@gautomdeka5813 жыл бұрын
Thank you very much
@ThePolyphysicsProject Жыл бұрын
Hey Brant, this video is very informative, and it is easy to see the moving parts! I mentioned your video in my lecture on the "Mathematical Structure of Quantum Theory". To introduce some novelty, I did not use the standard method (i.e. the Frobenius method or the algebraic method), but instead I generated the Hermite polynomials using Gram-Schmidt orthogonalization. Please check it out! Skip to 1:18:21: kzbin.info/www/bejne/Z6ewpZt9prqWqJY
@J.P.Nery.N.8 жыл бұрын
Brilliant!
@kq6up10 жыл бұрын
This is what I got for the answer for the check your understanding: www.physicsforums.com/showthread.php?p=4784187#post4784187
@BPHSadayappanAlagappan3 жыл бұрын
@@RyPangi5 I got hbar²/m( d/dx)
@DanielRamyar9 жыл бұрын
In slide 7 fourth line, you cannot just add one without changing the order of a-a+ because a-a+ = a+a- +1, otherwise really helpful video!
@DanielRamyar9 жыл бұрын
+John Doe Shouldn't he then also subtract 1?
@ta4h1r22 жыл бұрын
He wasn't changing the order of the operators because he was just rewriting +1/2 = -1/2 + 1
@donaldhuidrom49737 жыл бұрын
m i the only who doesnt know how he get E value at the end?
@zeenaligog8 жыл бұрын
this is called algebraic method of TISE
@gerrynightingale90458 жыл бұрын
"All of the energy and matter that existed still exist. Matter does not create energy of itself. The actions of matter enable energy to become manifest".
@bobobobo63944 жыл бұрын
respect
@Jbroglydecap10 жыл бұрын
good explanation, perfect job!!!!; U subscribed to your channel))