Quantum harmonic oscillator via power series

  Рет қаралды 54,747

Brant Carlson

Brant Carlson

Күн бұрын

Пікірлер: 78
@kq6up
@kq6up 10 жыл бұрын
Brant, you have a talent for breaking this down manageable bite sized pieces. Griffiths is also good at explaining the topic in a plain and accessible way. Betwixt the two of you I finally understand QM.
@turboleggy
@turboleggy 4 жыл бұрын
Give this guy some gold.
@sphericalchicken
@sphericalchicken 11 жыл бұрын
That's right. The power series must terminate or the solutions go to infinity (not physical), but the power series only terminates for special values of K, which correspond to special values of the energy. Those special energies will make the series terminate either for even powers or for odd powers, but never both, so physics requires us to choose. We lose a lot of freedom that way, but that's what physics requires, and that's one of the really strange things about quantum mechanics.
@davidwilliam152
@davidwilliam152 4 жыл бұрын
You explained termination part very well. Thank you!
@anindyapakhira2821
@anindyapakhira2821 4 жыл бұрын
You're a lifesaver. Thanks a lot. This really really helped. God bless you
@edgareduardobohorquezbaqui225
@edgareduardobohorquezbaqui225 4 жыл бұрын
I don't get why at 31.40 the function "h(ξ)" approach to e^ξ^2. Help!
@MiguelGarcia-zx1qj
@MiguelGarcia-zx1qj 3 жыл бұрын
Very clever. Much better than the generic power series method that I was taught (in a time when, in Spain, mathematicians fled from applications as if they were the Plague). As a matter of fact, before I saw this video, I tried myself to get power series solutions to the infinite square well QM problem, running into poorly behaved power series.
@mithilaum
@mithilaum 10 жыл бұрын
Thank you. At 26:16 you meant to write (K-1) and not (K+1).
@hershyfishman2929
@hershyfishman2929 2 жыл бұрын
10:10 should be (ξ^2 -1) rather than (ξ^2 -2)
@felipequintero7357
@felipequintero7357 Жыл бұрын
i was wondering the same thing.Thanks
@elliotwozniak1654
@elliotwozniak1654 10 жыл бұрын
Thanks for the video! This was a really helpful breakdown of the analytic method.
@clopensets6104
@clopensets6104 4 жыл бұрын
2:56 just out of pure curiosity, could you have just substituted the 'xsi' representation of 'x' into the bottom 'x' of the derivative, and 'cancelled' all the coefficient of 'xsi' by multiplying the derivative by 'wm/h-bar', in order to describe the partial derivative in terms of 'xsi'. Since, the resulting expression is identical to the one shown in 6:50 ! If not..why? Is it because it's mathematically unorthodox???
@sangaytbhutia1454
@sangaytbhutia1454 4 жыл бұрын
Yes i also feel that we can do it like what you said: bascically what i feel is that he is non-dimensionalizing the differntial equation since we often do it when we want to solve differntial equation in computer....
@frede1905
@frede1905 4 жыл бұрын
I have something I've struggled to understand. Usually when the textbooks explain how the polynomial h approaches e^(g^2) (g is that greek letter, but I dont have it on my keyboard), they first explain that the recursion formula becomes approximately a_(j+2)=(2/j)•a_j for large values of j. Then the say that this implies that a_j is approximately C/(j/2)!, where C is a constant. But the problem I have with this is that using that formula, you could easily obtain an expression relating the (a_j)'s for odd values of j and those for even values of j, which breaks the argument that a_0 and a_1 are arbitrary constants with no relation to each other. The only solution that I can come up with is that there are two constants, C_1 and C_2, in the equation for a_j (and not just one constant C), one for the odd values of j and one for the even values of j. But if those two constants have different signs (one is negative and one positive), then the terms in the series will alternate in signs, which means that the series might not blow up at g=infinity (the terms "cancel each other out"), and most importantly, the series certainly won't become e^(g^2).
@hc223
@hc223 2 ай бұрын
How did you get that recurrence relation at 42:56 ?
@KingCrocoduck
@KingCrocoduck 10 жыл бұрын
I'm confused. What's the relationship between h(xi) and the Hermite polynomials? The latter sort of just popped up out of nowhere
7 жыл бұрын
Hermite polynomials solve that very same differential equation for h(xi). h(xi) results to be a Hermite polynomial series, normalized with a_0 = 1. The last expression of psi(x) is the solution for each energy eigenstate already normalized for every value of n bringing in the Hermitian polynomials (that considers a_0 = 1).
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
(Найти такие компьютеры можно в Бритчестере в Лавровой библиотеке и Логове Дарби, опция «Добавить информацию» и выбрать освоенный навык).
@abguitar99
@abguitar99 9 жыл бұрын
Thank you so much for this video. Got back on track now.
@arajaram19
@arajaram19 10 жыл бұрын
This video is amazing. Thank you.
@MehMoona-b7v
@MehMoona-b7v Жыл бұрын
Plzz tell me .. To satisfy the graph in which equation we have to put the values of E and (xi).
@rachs1fan34
@rachs1fan34 4 жыл бұрын
Old video but imma leave a comment anyway For h_3 I get the answer: ( ξ - (2/3) ξ^3 ) a_1 However, given the Hermite polynomial for H_3 at the end, it sort of seems like a_1 should be -12 for some reason Is it due to normalization? Or have I missed something
@BPHSadayappanAlagappan
@BPHSadayappanAlagappan 3 жыл бұрын
Got the same answer 😃 and same doubt 😬
@apoorvmishra6992
@apoorvmishra6992 Жыл бұрын
I did not get it. If we get the solution as e-z^2/2 for psi, why do we multiply by h? You said that the reason was it is hard to approximate using the power series but why dk we nedto approximate it with power series?
@antoniorubio602
@antoniorubio602 4 жыл бұрын
Can anyone explain me why we want to remove the asymptotic behavior, and what effect h(xi) has on the asymptotic solution? Thank you
@dbf72829
@dbf72829 3 жыл бұрын
To answer your first QUESTION why we remove the asymptotic behaviour I'm gonna say it's because of pure mathematical reasons In the assumed solution of si we Set B=0 because that'd give us infinite value of the solution and the wave function at large values of c . Same way if c is large the polynomial becomes zero at large values and that's unacceptable from mathematical point of view but we still got in a better position than the last equation so we remove and continue solving . Watch from 10:00 min you'll understand Mr Brant explains it there. Thank you Basically when for large values of c the power series goes to zero that in general isn't a good representation of power series that's why we need to kick out the asymptotic behaviour Psi ----> as si C---------> is the sign , the variable that replaces x and psi is a function of this ...
@RosaPetit
@RosaPetit 8 жыл бұрын
You are really amazing!! thank for this video
@shawzhang4498
@shawzhang4498 5 жыл бұрын
I think the plot done at around 39:30 curved against the wrong axis
@djangogeek
@djangogeek 8 жыл бұрын
You are a life saver
@reaniegane
@reaniegane 8 жыл бұрын
Why is your power (e^2)/2 ? the characteristic polynomial is r=+- xi, so shouldn't it be e^xi *psi I am missing something.
@rabiayounus1482
@rabiayounus1482 7 жыл бұрын
thanks for really informative video.... God bless u
@weizhou3928
@weizhou3928 2 жыл бұрын
Look like the ray series (ansatz) in seismology but definitely the ray series does NOT terminate and we have to stay with asymptotic solutions. Will think a bit more..
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Один другому говорит: «что-то не так - воздух и все остальное кругом экологически чистое, а все что мы едим - натуральное, органическое, но почему-то никто не живет дольше тридцати».
@sethnickell
@sethnickell 8 жыл бұрын
very nice explanation, thank you SO much
@AnkurKumar-kw4md
@AnkurKumar-kw4md 7 жыл бұрын
nice explanation.. really helpful thank u so much sir
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Не послушавшись рукописи, наш текст продолжил свой путь.
@Sunshine-yv6di
@Sunshine-yv6di 3 жыл бұрын
THANK YOU SO MUCH THIS HELPED ME A LOT!!
@siddharthsehgal2349
@siddharthsehgal2349 7 жыл бұрын
Please can you provide the answer for n = 3 so that we can check our answer. Also why do our worked out solutions not exactly match the provided ones in the tables ( e.g. For n=2)
@pranavbvn5537
@pranavbvn5537 6 жыл бұрын
Check the video at 45:07 , it gives you a rough structure of the solution of the problem
@saileshbarui8156
@saileshbarui8156 4 жыл бұрын
Thank you sir💓
@hotspringroll
@hotspringroll 8 жыл бұрын
thank you so much, really good video!
@adrijanandi2813
@adrijanandi2813 6 жыл бұрын
Helps a lot .thnku so much
@Salmanul_
@Salmanul_ 4 жыл бұрын
How did the physicists know that writing x in that way makes the differential equation simpler?
@κπυα
@κπυα 2 жыл бұрын
We can change the variables x = αξ and see if there is any useful choice of α.
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
(а у него был вес 6 тонн и скорость 3 км в час - страшный зверь!) и протаранил теремок.
@debasishraychawdhuri
@debasishraychawdhuri 3 жыл бұрын
What's the name of the book?
@κπυα
@κπυα 2 жыл бұрын
Introduction to Quantum Mechanics - David J. Griffiths
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Потом мы покатались на аттракционе вислоухие горки, которые почему-то назывались Волшебные портянки.
@kalyansur5598
@kalyansur5598 4 жыл бұрын
Now it is clear why k=2n +1 thanks
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Игроку предстоит победить это громадное чудовище, но для этого необходимо подготовиться и набрать команду.
@gerrynightingale9045
@gerrynightingale9045 8 жыл бұрын
"All of the energy and matter that existed still exists. Matter does not create energy of itself. The actions of matter enable energy to become manifest".
@II-op5vv
@II-op5vv 8 жыл бұрын
Gerry Nightingale why don't you go back to third grade before you run your mouth
@gerrynightingale9045
@gerrynightingale9045 8 жыл бұрын
Overlord Master Which aspect of what I wrote can you disprove? Or do you even understand any of it?
@II-op5vv
@II-op5vv 8 жыл бұрын
Gerry Nightingale I'm not saying your comment is wrong. My point is that the statement is quite well known to children. There is no real point of commenting that here, it's like I commented, "Gerry Nightingale is an idiot." It's a common fact that most children know already.
@gerrynightingale9045
@gerrynightingale9045 8 жыл бұрын
Overlord Master Is that all you have? No rebuttal at all? So, you have no comprehension at all of what your objecting to? Why? It's very simple in construct and readily understood. What sort of parent names a child "Overlord Master"...or are you using that 'name' to 'hide and troll' with? I think that is the reasonable assumption. (why not complain to your 'Masters' on the various physics Forums? Perhaps they can exert greater influence than a pretentious troll with delusions of grandeur)
@gerrynightingale9045
@gerrynightingale9045 8 жыл бұрын
Overlord Master I wasn't aware 'trolls' could do anything other than be 'trolls'...I believe the 'hunting' aspect only exists in your mind. (you are not the 'Noel Coward' you believe yourself to be...nor even literate) Why would I want to analyze a 'troll?' There isn't sufficient motivation to do so, as the knowledge would amount to nothing of any value. You cannot rebut a single word of the concepts I wrote...and that is sufficient unto itself as a 'successful hunt' on my part. Yes...take your child-boy fantasy 'name' and run away to 'snipe' at others with your facile 'name-calling'...it's all you have. (although I'm curious why an obvious 'physics troll poseur' would want to 'comment' on such a 'thread' involving complex issues of the nature of the relationships of energy and matter) Oh...enjoy your {BLOCK}
@fathimaunaisa6076
@fathimaunaisa6076 Жыл бұрын
Superb
@ThaGoofyRider
@ThaGoofyRider 7 жыл бұрын
damn your handwriting bro! but thanks for the drop!
@imppie3754
@imppie3754 6 жыл бұрын
at 42:55 i dont understand how -2(n-j) came T_T pls halp
@jenilb420
@jenilb420 5 жыл бұрын
you sub in k=2n+1 in your original recursion relation. Hopefully that clears it up!
@Al-Qaisi_Iraqi
@Al-Qaisi_Iraqi 6 ай бұрын
Thank you
@Satabdikakati
@Satabdikakati 2 жыл бұрын
Thank you...
@brijeshmehra8182
@brijeshmehra8182 7 жыл бұрын
THANKSSS MAN
@sandeeptiwari5189
@sandeeptiwari5189 4 жыл бұрын
Tq
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Но если сим подарит букет пожилому, то последний возненавидит его (отношения между ними испортятся) и.
@Johnsmith-j5u
@Johnsmith-j5u Ай бұрын
I feel they could have picked a better symbol. I can't draw a xi
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
В Симс 4 появилась и смерть от эмоций.
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Еще мне хочется отдохнуть в Кремле.
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Мой парень гуляет просто так.
@jamapell
@jamapell 5 жыл бұрын
x times kkkksii
@ВячеславВячеславыч-с7с
@ВячеславВячеславыч-с7с 2 жыл бұрын
Моя девушка гуляет просто так.
Free particles and the Schrodinger equation
14:19
Brant Carlson
Рет қаралды 119 М.
Quantum harmonic oscillator via ladder operators
37:22
Brant Carlson
Рет қаралды 136 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Harmonic oscillator: Differential equation
16:42
MIT OpenCourseWare
Рет қаралды 79 М.
From the TISE in 3d to spherical harmonics
45:08
Brant Carlson
Рет қаралды 50 М.
🔥Garry KASPAROV teaches us 👉how to PUNISH this PIN.
11:24
Ajedrez con concepto ENG
Рет қаралды 152 М.
Why can't you walk through walls? The Pauli Exclusion Principle Explained
48:59
1 Atheist vs 25 Christians (feat. Alex O'Connor) | Surrounded
1:33:20
Lecture 8: Quantum Harmonic Oscillator
1:21:00
MIT OpenCourseWare
Рет қаралды 361 М.
Intro to the Quantum Harmonic Oscillator in 9 Minutes #PaCE1
9:44
Richard Behiel
Рет қаралды 38 М.
Eigenstates of the quantum harmonic oscillator
18:48
Professor M does Science
Рет қаралды 17 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41