Angular momentum operator algebra

  Рет қаралды 131,301

Brant Carlson

Brant Carlson

Күн бұрын

Пікірлер
@IsaacMandez
@IsaacMandez 11 жыл бұрын
After watching this video, I kind of started understanding the quantum mechanics ..Thank you so much Mr Carlson.
@fayssalelansari8584
@fayssalelansari8584 4 жыл бұрын
hh kidn of XD
@martingamer5591
@martingamer5591 6 жыл бұрын
You explained this infinitely better than my professor. Thanks, my dude.
@ferox7878
@ferox7878 7 жыл бұрын
your videos are great. This adds so much value to youtube, having such good education available to the whole world for free.
@ItsSebBro
@ItsSebBro 6 жыл бұрын
I'm a british physics student and this massively helped me at university. Your playlist is thorough and explainative. Many many thanks
@spasbanchev8922
@spasbanchev8922 Жыл бұрын
Hey, I don't know if the comments reach you but your lecturing style is fantastic! Thanks for the help with my revision - I've always found that seeing the derivation of something helps me instantly understand and commit to memory.
@Gamma_Digamma
@Gamma_Digamma 4 жыл бұрын
30:49 ladder puns "rung by rung"... This man is a real legend
@menoetius8182
@menoetius8182 4 жыл бұрын
It’s almost as if they call them ladder operators for a reason, weird.
@supercard9418
@supercard9418 2 жыл бұрын
Fantastic video, this is helping me with my Mathematical Physics classes. Thanks!
@c.e.g.o4797
@c.e.g.o4797 3 жыл бұрын
I could not be more thankful...
@ruchadesai5958
@ruchadesai5958 5 жыл бұрын
Thank you so much for these videos! We follow Griffiths four our college and this is indeed very very helpful for my exams!! Thank you so much! 💜
@tjh2567
@tjh2567 4 жыл бұрын
Question 1&2 Answers: For the first one, l would need to equal 1 for l*(l+1) to equal 2. And there are always 2*l+1 states, so 3 states. For the second question, l=3/2 (again 3/2*(3/2+1)=15/4), and there are 2*l+1 states, so 3/2*2+1=4 states.
@michaelchang2012
@michaelchang2012 8 ай бұрын
Shouldn't it be 5 and 7? as each step is seperated by only 1/2
@soniabiswas3703
@soniabiswas3703 7 ай бұрын
​@@michaelchang2012No. The answers will be 3 and 4 respectively.
@michaelchang2012
@michaelchang2012 7 ай бұрын
@@soniabiswas3703Yup, just realized that for m it’s always separated by 1 not 1/2
@FlintPet
@FlintPet 6 ай бұрын
@@michaelchang2012 I dont Understand the first two questions but the thrid should be 0 and the fourth schould be 15/4 if i understood it correctly?
@Krishnajha20101
@Krishnajha20101 9 жыл бұрын
Great video. But I had a doubt. At 29:26 you say that L+ft=0. But you also mentioned that the highest value that Lz can take is L. So, why exactly is L+ft=0 and not L(total angular momentum)? Sorry if I am being naive. I am new to Quantum Mechanics.
@AdamKlingenberger
@AdamKlingenberger 8 жыл бұрын
+Krishna Jha I would like to see Dr. Carlson answer this too, but I believe the answer is that (L_+)(f_t)=0 because an eigenstate that is zero everywhere is non-normalizable, which means it is not physically possible.
@AdamKlingenberger
@AdamKlingenberger 8 жыл бұрын
+Krishna Jha Lz cannot equal L because they do not commute.
@Winium
@Winium 8 жыл бұрын
What? @19:51 they definitely commute.
@manishsingh-vk8if
@manishsingh-vk8if 5 жыл бұрын
@@Winium L^2 and Lz commute.
@condmatgirl27
@condmatgirl27 9 жыл бұрын
simple and effective explanation indeed.
@MiguelGarcia-zx1qj
@MiguelGarcia-zx1qj 3 жыл бұрын
41:58 There is a small detail I would want to highlight: after concluding that l_(l_-1)=l(l+1), you argue that the ONLY solution must be l_=-l As I was watching the video, I was expecting l_(l_-1)=(l_-1)l_=l(l+1), thus having l_=l+1 Of course, as it is a second degree equation on l_ (or l) there are two solution; the other one being l_=-l So, unless you add the condition l_
@hershyfishman2929
@hershyfishman2929 3 жыл бұрын
He should have said this explicitly, but the condition l_
@yogitshankar6348
@yogitshankar6348 Жыл бұрын
nice thanks was looking for it
@xxdxma6700
@xxdxma6700 2 жыл бұрын
Your video is life saving, thank you !
@ricardomorin7863
@ricardomorin7863 7 жыл бұрын
please correct me if I am wrong but I believe that at 9:07 it should be zzPyPy, not zzPyPx. This then means that the two terms wont cancel later at 9:35
@curiouswriter
@curiouswriter 7 жыл бұрын
Ricardo Morin his x looks like y. Thats all.☺
@dr.rahafajaj3214
@dr.rahafajaj3214 10 жыл бұрын
Very useful video. Thank you for your clear explanation.
@anishakhatun2585
@anishakhatun2585 3 жыл бұрын
Thank u sir...it really helps me to understand q.m. better.
@muhannadfares6674
@muhannadfares6674 7 жыл бұрын
really thank you finally I understand the whole angular momentum 🌹🌹🌹
@yifanwang2645
@yifanwang2645 7 жыл бұрын
Very clear and helpful explanation, Thank you!
@znorfis
@znorfis 7 жыл бұрын
I do understand that L± acting on an eigenfunction can find new eigenfunctions. However I do not understand why there can't be more eigenfunctions. Why can't there be an other operators that finds finds other eigenfunctions? What did I miss?
@zenojimneuromansah8665
@zenojimneuromansah8665 11 жыл бұрын
Very good video. I was wondering about the step at around 16:10. You mention adding Lz into the middle of the two Lx's and then go on to say "this is essentially an identity". How/where can I find a way to carry out this identity?
@evancooper7336
@evancooper7336 10 жыл бұрын
Basically he just added 0 to the equation, by adding and subtracting the same thing allowing him to later use the terms added to define the commutator. Hope that helped.
@georgeziak4483
@georgeziak4483 3 жыл бұрын
Thanks for the video. Is there any video on the calculation ΔLx= sqrt( - ^2 ) ?!?
@recomoto
@recomoto 4 жыл бұрын
classrooms are very outdated at this point. I'd rather listen to the best lecturers anytime I want to.
@warzonemoments3970
@warzonemoments3970 8 жыл бұрын
Can you cancel out terms that have double Z and Pz operators since ZZ and PzPz commute?
@احمدجواد-خ6ز
@احمدجواد-خ6ز 3 жыл бұрын
From Iraq, thank you so much🌱
@dibyaranjanpanda2951
@dibyaranjanpanda2951 4 жыл бұрын
Very well explanations ...
@erwinheisenberg8821
@erwinheisenberg8821 5 жыл бұрын
Anyone that can walk me through the "check your understanding questions" at the end? For the last 2, I've come to L^2f=0 for the first one and 6h^2f on the second (h being h-bar), am I correct? How does one answer the other 2?
@manishsingh-vk8if
@manishsingh-vk8if 5 жыл бұрын
Answer to the last one I think will be (15/4)h(bar)^2 f. No way its going to be 6h(bar)^2. regarding question 1 and 2, I got the answer 5 for Q1 and 7 for Q2. Am i right ?
@gerontius1726
@gerontius1726 5 жыл бұрын
@@manishsingh-vk8if I think the answer for Q2 must be 6, because N has to be an even number and l goes in steps of hbar, so it cannot be zero.
@LudusYT
@LudusYT 4 жыл бұрын
manish singh - The answer to Q1 should not be 5. m is 2 and so l can range from -2 to 2. Since l is a half integer, you have to include more than just -2, -1, 0, 1, and 2. You also have to include half integers like 1/2. Therefore, the answer must be 9.
@melanienielsen8740
@melanienielsen8740 4 жыл бұрын
Well, the ladder operators bump you up and down in units of h bar right? Given that and the fact that the spectrum has to be symmetric about the origin, you would have to be either half or whole integer. That's where the distinction between half and whole integer spin particles come from in nature, since the spin of a particle is given by the maximum value of the z-component for instance, depending on your choice of basis right? And regarding the other questions. Since 15/4 is not an integer nor halfinteger, I believe the answer is 0. Regarding the last two, in the first case the possible values must be integers since it includes 0, and in the other case halfintegers by a simular argument. Do I have it right? Please correct me if not
@wathabalhamdany3008
@wathabalhamdany3008 9 жыл бұрын
Thanks Dr Brant carlson
@kalyanjyotikalita4562
@kalyanjyotikalita4562 8 жыл бұрын
very useful series. I have a doubt regrading the eigenstate of Hamiltonian operator you mentioned. Is it always a stationary state?
@bob98123
@bob98123 8 жыл бұрын
+Kalyan jyoti Kalita No, they're not. The hamiltonian is time dependent, as defined by the schrodinger equation. The time independent form of the schrodinger equation has eigen-functions that are stationary states. These solutions were examined previously and is what he's referring to. In general if you know the stationary state, you know (can calculate ) the state at time = t (any time later on) by tacking on the time dependent term psi(t)=exp(iEt/hbar) as long as the potential is time invariant. The time dependent term is only interesting if we're looking at superpositions/linear combinations of wave functions, in which case the phase cancelations give interesting results (as seen at the end of the 19th video/lesson). If the potential varies over time then time-dependent purturbation theory is used, and from my understanding as of so far, thats only used when the time dependent portion is small in comparison to the time independent portion. I'm also new to this, so im probably not 100% correct.
@musab522
@musab522 7 жыл бұрын
thank you for the explain but you should adding some questios for every section >>>>>>realy very good lecture
@griffithfimeto3387
@griffithfimeto3387 3 жыл бұрын
What is the result of [ Lz,L^2+_] ? PLEASE I NEED TO KNOW
@herrzyklon
@herrzyklon 11 жыл бұрын
Really like this, thanks
@karpagamk5562
@karpagamk5562 5 жыл бұрын
At 17.32 shouldn't it be lx(lz,lx)
@musamohammed5178
@musamohammed5178 7 жыл бұрын
so nice .. thank you so much
@RahulYadav-in9ep
@RahulYadav-in9ep 2 жыл бұрын
how do we confirm the answers for check your understanding?
@abdulahamer6238
@abdulahamer6238 6 жыл бұрын
you're so smart.
@manuelsojan9093
@manuelsojan9093 6 жыл бұрын
is eigenstate and eigenfunction synonymous?
@secondller
@secondller 6 жыл бұрын
No. This terms comes from Linear Algebra. In comparison, E.state is similar to a vector and E.value to a scalar. In QM it is mostly used because of Schrodinger equation.
@buddydiamond8736
@buddydiamond8736 Жыл бұрын
thank you thank you thank you thank you thank you!!!!!!!!!!!!!!!!!!
@user-cf8wl9hk2q
@user-cf8wl9hk2q 4 жыл бұрын
thank you so much
@Boooommerang
@Boooommerang Жыл бұрын
Thanks!
@shortwalebhaiya468
@shortwalebhaiya468 6 жыл бұрын
So. Thank you very much nice
@albertliu2599
@albertliu2599 6 ай бұрын
check your understanding: . . . 1. L2|f> = 2hbar^2|f>, L = 1, Lz could be -1, 0 , 1 ( all * hbar ) . A total of 3 states. 2. L2|f> = 15/4 hbar^2|f>, L = 3/2, Lz could be -3/2, -1/2, 1/2, 3/2 ( all * hbar ). A total of 4 states. 3. Lz|f> = 0, L2|f> could be any (hbar)^2 * l * ( l+1 ), l = 0, 1/2, 1, 3/2, .... 4. Lz|f> = 3/2 * hbar |f> could be any (hbar)^2 * l * ( l+1 ), l = 3/2, 2, 5/2, 3, ... Shouldn't there be a |f> at the end for the 4th question?
@FlintPet
@FlintPet 6 ай бұрын
I be watching this on my pz
@Mohammed-cc5ox
@Mohammed-cc5ox 9 жыл бұрын
l = 0 , + or - 1/2 , + or - 1 ..............
@عدوشالعمري
@عدوشالعمري 8 жыл бұрын
حلو جدا
@solsticetwo3476
@solsticetwo3476 5 жыл бұрын
Nice math but no insights. No physics. No explanation about why the operator behave in that way.
@menoetius8182
@menoetius8182 4 жыл бұрын
Shut up bitch u ever try to talk shit on Brant Carlson and I’ll find you.
Angular momentum eigenfunctions
20:52
Brant Carlson
Рет қаралды 77 М.
Quantum harmonic oscillator via ladder operators
37:22
Brant Carlson
Рет қаралды 136 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
All Basics About Angular Momentum in QUANTUM Mechanics
15:46
Alexander Fufaev (fufaev.org)
Рет қаралды 31 М.
Angular momentum addition
24:47
Brant Carlson
Рет қаралды 93 М.
Angular momentum operators and their algebra
14:28
MIT OpenCourseWare
Рет қаралды 69 М.
Spin 1/2
31:03
Brant Carlson
Рет қаралды 105 М.
Can MORE Dangerous Saw Blades Cut Wood?
23:40
Waterjet Channel
Рет қаралды 294 М.
To Understand the Fourier Transform, Start From Quantum Mechanics
31:37
Physics with Elliot
Рет қаралды 524 М.
Ladder operators in angular momentum
21:48
Professor M does Science
Рет қаралды 29 М.
Free particle wave packets and stationary states
35:57
Brant Carlson
Рет қаралды 47 М.
Number operator and commutators
15:49
MIT OpenCourseWare
Рет қаралды 31 М.
Quantum orbital angular momentum
24:04
Professor Nano
Рет қаралды 6 М.