Solving 8^x+2^x=130 | An Exponential Equation

  Рет қаралды 56,168

SyberMath

SyberMath

Күн бұрын

🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts)
Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
/ @sybermathshorts
⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
My merch → teespring.com/...
Follow me → / sybermath
Subscribe → www.youtube.co...
Subscribe → www.youtube.co... (shorts)
⭐ Suggest → forms.gle/A5bG...
If you need to post a picture of your solution or idea:
in...
#ChallengingMathProblems #ExponentialEquations #Exponentials
via @KZbin @Apple @Desmos @NotabilityApp @googledocs @canva
PLAYLISTS 🎵 :
Number Theory Problems: • Number Theory Problems
Challenging Math Problems: • Challenging Math Problems
Trigonometry Problems: • Trigonometry Problems
Diophantine Equations and Systems: • Diophantine Equations ...
Calculus: • Calculus

Пікірлер: 48
@goldfing5898
@goldfing5898 Жыл бұрын
8^x + 2^x = 130 (2*2*2)^x + 2^x = 130 2^x * 2^x * 2^x + 2^x = 130 Substitute 2^x = t t*t*t + t = 130 t^3 + t = 130 t^3 + t - 130 = 0 This is a reduced cubic equation. Try to find an integer solution by testing the divisors of the constant 130. 1 * 130 2 * 65 5 * 26 10 * 13 Positive integers: t = 5 is a solution, since 5^3 + 5 = 125 + 5 = 130 There are no negative solutions because if t is negative, so is t^3 and the sum of them, so this cannot be positive 130. Polynomial division: (t^3 + t - 130) : (t - 5) = t^2 + 5t + 26 The remaining quadratic equation t^2 + 5t + 26 = 0 as expected, has complex solutions only: t2,3 = (-5 +- sqrt(79)*i) / 2 = -2.5 +- 4.4441*i (approximately). I assume we are only interested in real solutions. t = 5 2^x = 5 x = log2(5) = ld(5) = 2.321928095...
@flyingspirit3549
@flyingspirit3549 6 ай бұрын
Extra credit for going to all the work of showing how this is solved!
@pierrecloutier9667
@pierrecloutier9667 5 ай бұрын
Exactly 2,3219280948875
@jeanlismonde8718
@jeanlismonde8718 11 ай бұрын
on pose u = 2^x et l'équation devient u^3 + u - 130 = 0 la factorisation est aisée avec (u - 5)(u²+5u +26)=0 donc une racine réelle en u soit u=5 et donc x = ln5/ln2 et deux racines complexes conjuguées en u : -5/2 + ou - i.rac(79)/2
@broytingaravsol
@broytingaravsol Жыл бұрын
x=log_(2)(5)
@orchestra2603
@orchestra2603 Жыл бұрын
Nice! But how about talking in more details about a log of a complex number? It would be actually quite curious, since complex logarith, is a wider topic. In fact, you'll get an infinite number of solution for x over C.
@SyberMath
@SyberMath Жыл бұрын
We'll get to that
@ytlongbeach
@ytlongbeach 2 ай бұрын
@sybermath has there been a follow-up, on how to solve/simplify the log of the complex number solutions?
@popitripodi573
@popitripodi573 Жыл бұрын
Very nice and pretty easy! I guessed that 5 was a root so I used Horner to find the other factor ❤❤❤❤
@milandus1400
@milandus1400 Жыл бұрын
Very nice! My method was as follows: once we have LHS in the form of (2^x)^3 + 2^x ... then let's rewrite our RHS to the same form, RHS = a^3 + a 130 = a^3 + a voilá 5^3 +5 = a^3 + a a=5 comparing LHS = RHS (2^x)^3 + 2^x = 5^3 +5 2^x = 5 x=lg(2) of 5 🙂
@kianmath71
@kianmath71 Жыл бұрын
X= ln(5)/ln(2)
@jankjaer1731
@jankjaer1731 Жыл бұрын
This is the correct method.
@francis-dt2hl
@francis-dt2hl 9 ай бұрын
8(2) + 2(6)=130 an English major who loves maths
@AnirbanMukherjee-gv2we
@AnirbanMukherjee-gv2we 5 ай бұрын
😂u can't write diff no. Both are having power x
@ytlongbeach
@ytlongbeach 2 ай бұрын
How does one solve the log of a complex number ?
@SyberMath
@SyberMath Ай бұрын
natural log which I call Ln (I wrote L in lowercase below) can be used with complex numbers as follows: ln(a + bi) = ln|a + bi| + i・arg(a + bi)
@CrawliestCotter
@CrawliestCotter Ай бұрын
Also for imaginary numbers, as a result of Euler's Identity, ln(i) = i*pi/2. So in calculations of ln(a*i) you can simplify to ln(a) + ln(i) = ln(a) + i*pi/2.
@akhileshiyer296
@akhileshiyer296 Жыл бұрын
Do we not calculate if the complex solution is actually possible or not? That is, it the logarithm of that number a positive value not? ln(r) + i(theta) has ln(-5) which is an impossible calculation, right?
@SyberMath
@SyberMath Жыл бұрын
it's not impossible. it just gives us complex solutions
@akhileshiyer296
@akhileshiyer296 Жыл бұрын
@@SyberMath how can you take the natural log of a negative number?
@EMERGINGGamer
@EMERGINGGamer Жыл бұрын
you can actually by converting complex number to eulers form @@akhileshiyer296
@UttkarshPandey-u7p
@UttkarshPandey-u7p 6 ай бұрын
Aah u can se Euler form taking e as base ​@@akhileshiyer296
@CrawliestCotter
@CrawliestCotter Ай бұрын
Logarithms with a negative domain have a complex range. You can calculate them using Euler's Identity e^(i*pi)=-1. From there you get i*pi=ln(-1). So ln(-x)= ln(x) + ln(-1) = ln(x)+ i*pi.
@Sgt_Bill_T_Co
@Sgt_Bill_T_Co Ай бұрын
2.322 as near as dammit. Done in 1 minute. first guess 2.2 then 2.3 then 2.32 - finaly 2.322 - peasy!
@Elceszar
@Elceszar Жыл бұрын
Si ; 130 = 13×5×2 Entonces (8^X + 2^X) es multuplo de 13; 5 ó 2 Haciendo : 2^X = a 8^X + 2^X = 130 restando 2a a^3 + a - 2a = 130 - 2a a^3 - a = 130 - 2a a(a^2 - 1) = 130 - 2a a (a-1)(a+1) = (a-1)(a)(a+1) = 130 -2a y como todos sabemos... el producto de tres numeros consecutivos es multiplo de seis ( mod6) ó (°6) mod6 = 130 - 2a °6 = 130 -2a - 132 ; ojo 132 = °6 °6 = -2a -2 => °6 = 2a+2 °6 = 2(a+1) --> (a+1) = °6 Remplazando a = 2^X en (a+1) 2^X + 1 = 6 2^X = 5 ----> X = lg en base 2 de 5 No olvidemos que 2^X ( 2^2X + 1) = 130 = 13×5×2 Observar que es multiplo de 5
@matematicacomailton
@matematicacomailton Жыл бұрын
beautiful bro...
@SyberMath
@SyberMath Жыл бұрын
Thanks ✌️
@AsifAsif-zy4gp
@AsifAsif-zy4gp Жыл бұрын
Very good
@barteqw
@barteqw Жыл бұрын
Let t = 2^x t^3 + t = 5^3 + 5 Then t^3 - 5^3 + t - 5 = 0 (t-5) (t^2+5t+26) = 0 t = 5 Δ < 0 so second bracket don't have any solutions 2^x = 5 log 2 both sides x = log_2 5
@luladrgn9155
@luladrgn9155 Жыл бұрын
there are imaginary solutions, but u cant log them Lmao
@msathwik8729
@msathwik8729 Жыл бұрын
​​@@luladrgn9155 you can log imaginary numbers bro. Like ln(i)=i(pi)/2
@orchestra2603
@orchestra2603 Жыл бұрын
@@msathwik8729 i = exp(i * (pi/2 + 2pi*n) ), ln(i) = i*pi/2 + i*2pi*n, for any integer n=0,1,2... Complex logarithm doesn't give you a unique number, it's a "multi-branch" function, and i*pi/2 is only its principal value.
@mathswan1607
@mathswan1607 Жыл бұрын
2^x=5 x=log_2(5)
@Jefferytheturtlegod
@Jefferytheturtlegod Жыл бұрын
13
@satyanarayana7346
@satyanarayana7346 Жыл бұрын
Log 5/2
@ilyashick3178
@ilyashick3178 Жыл бұрын
Hmm, 130 is equal 128+2, 128 is 2^7, and total on right 2^7+ 2^1, take log on base 2 for each element of function log_2 of 8^x+log_2 of 2^x=log_2 of 2^7+log_2 of 2. 3x+x=8, x=2. But result 8^2 + 2^2 is not equal 130.
@maguschu
@maguschu Жыл бұрын
Because the property of log is log(AB) = log A + log B but not log(A+B) = log A + log B. Thus, log_2(8^x + 2^x) cannot be separated as log_2 8^x + log_2 2^x.
@ilyashick3178
@ilyashick3178 Жыл бұрын
Each part of function not whole function a+b+c as log a+logb+;logc not log(a+b+c),
@orchestra2603
@orchestra2603 Жыл бұрын
Well, that's because the equation with logarithms has nothing in common with the initial equation. I don't even understand why you constructed it. There's no logical link from one to the other. They are just two different things, and, no wonder, their are solutions are also different. So the roots that you found has nothing to do with the roots that are sought after.
@ilyashick3178
@ilyashick3178 Жыл бұрын
@@orchestra2603 Just in case, Log was introduced from 16 centure to get % of loan in math. Most of those lessons is nothing to do with college algebra or calculus.
@rakenzarnsworld2
@rakenzarnsworld2 Жыл бұрын
125 + 5 = 130
@Mpstories87
@Mpstories87 Жыл бұрын
X=ln_(2)(5)
@goldfing5898
@goldfing5898 Жыл бұрын
You must write either log_2_(5) with low index 2 for base 2, or ln(5)/ln(2)
@Mpstories87
@Mpstories87 Жыл бұрын
@@goldfing5898 definitely
@devondevon4366
@devondevon4366 Жыл бұрын
Answer Log 5 base 2 or 2.3219 2^3x + 2^x -130 =0 l let n= 2^x . Hence n^3 + n -130= 0 n^3- 125 +n-5 =0 (n-5)(n^2 + 5n +25) +1 ( n-5) = 0 n=5 is a solution hence 2^x=5 x = log argument 5 , base 2 Answer
@robertveith6383
@robertveith6383 Жыл бұрын
No, it's 2^(3x) + 2^x - 130 = 0. You need the grouping symbols.
@borisjeud8464
@borisjeud8464 Ай бұрын
X=2.32...
@N00MAK_CA_Finalist
@N00MAK_CA_Finalist Жыл бұрын
Great but i guess this concept of "i" in the mathematics is quite illogical!!! I mean how can you someone consider an imaginary term in the answer and call it an answer? Its okay I don't criticize you for the answer but it is the mathematics oops illogical mathematics is the problem
Solving An Infinite Exponential Equation
5:50
SyberMath
Рет қаралды 14 М.
An Interesting Diophantine Equation
11:24
SyberMath
Рет қаралды 2,5 М.
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
UNE ÉQUATION DES OLYMPIADES 8ˣ + 2ˣ  = 130
11:04
Hedacademy
Рет қаралды 130 М.
Solving An Interesting Log Equation | Math Olympiads
9:47
SyberMath
Рет қаралды 41 М.
A Very Interesting Rational Equation
12:43
SyberMath
Рет қаралды 2,9 М.
A Very Nice Exponential Equation
8:51
SyberMath
Рет қаралды 4,4 М.
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 593 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 283 М.