What I like about your videos is how you consistently do not choose the obvious pathway that most of us would use. In this case rather than following the blaring siren to change base, you chose more elegant pathways to get the same place. Just because they may take a little longer at times does not take away the theme that there are often many options. Along the way we recall principles that aren't necessarily used every day.
@SyberMath Жыл бұрын
💖 Thank you for the feedback! My mindset seems to be "How can I make the solution more complicated?" It's funny that I haven't thought of the "change of base" method for this problem. Thanks for the heads up!!!
@leif1075 Жыл бұрын
@@SyberMath Thank you for sharing. Wouldn't you agree your teo methods here are the same method thoigh just swapping bases?
@SyberMath Жыл бұрын
@@leif1075 no problem! That’s right. They are kind of the same. Using change of base, which, interestingly I haven’t thought of btw, would be an entirely different approach.
@oahuhawaii21412 ай бұрын
@SyberMath: I did the change to a common base, and got a general form; then, I could choose base e, 2, 3, 10, ... log2(x) + log3(x) = 1, switch to a common base log(x)/log(2) + log(x)/log(3) = 1 log(x)*(log(3) + log(2)) = log(2)*log(3) log(x) = log(2)*log(3)/log(6), choose base e x = e^[ln(2)*ln(3)/ln(6)] = e^(1/(1/ln(2) + 1/ln(3))) ≈ 1.5295923284918... BTW, with the exponent having a product and a quotient of logs, we can change bases for exponentiation and logarithm. Arranging for e^ln(2): x = e^[ln(2)*ln(3)/ln(6)] = [e^ln(2)]^[ln(3)/ln(6)] = 2^log6(3) This is the same if we chose base 2 instead of e. Arranging for e^ln(3): x = e^[ln(2)*ln(3)/ln(6)] = [e^ln(3)]^[ln(2)/ln(6)] = 3^log6(2) This is the same if we chose base 3 instead of e.
@justabunga1 Жыл бұрын
There is another method that you can also use, which is the change of base formula. This equation can be rewritten as log(x)/log(2)+log(x)/log(3)=1. Multiply everything by the LCD, which is log(2)log(3), and factor out log(x). This means that (log(3)+log(2))log(x)=log(2)log(3). Divide both sides by log(3)+log(2), or log(6). log(x)=log(2)log(3)/log(6), and x=10^(log(2)log(3)/log(6)). Simplify this even better and using properties of logarithms, which is x=2^(log_6(3)). The answer can also be x=3^(log_6(2)) if we interchange the the base of the exponent and the log of an argument.
@rajatdogra96 Жыл бұрын
Agreed same
@SyberMath Жыл бұрын
Nice! 🤩
@MichaelRothwell1 Жыл бұрын
Agreed, that was my method (though I used ln rather than log). I was very surprised that SyberMath didn't present this method also, as the equation is crying out for the change of base rule! Also, this method leads to a pleasing symmetrical result, easily simplified to the forms found in the video.
@iz8376 Жыл бұрын
yeah I did this method in my olympiad too and saves a lot of time
@ytlongbeach Жыл бұрын
yup. i did it the same way !!
@erikdahlen9140 Жыл бұрын
I did log base change in my head when i saw the problem, factored, and solved for x. easier than whatever you did here
@rajatdogra96 Жыл бұрын
Log x ( log 2 + log 3) = log 2 * log 3
@KookyPiranha Жыл бұрын
Aint no way this is a math olympiad problem. I saw a similar one in my hw
@broytingaravsol Жыл бұрын
x=2^(ln3/ln6)
@MushookieMan Жыл бұрын
I just used the change of base formula on one of the logs, wasn't a bad method
@SyberMath Жыл бұрын
Very good!
@tetsuyaikeda4319 Жыл бұрын
I could know 'Zee is not see, nor c, nor be ' that must be some kind of joking
@christianlopez11488 ай бұрын
log2x=lnx/ln2, log3x=lnx/ln3....easyly you can find lnx.
@josemanuelbarrenadevalenci653 Жыл бұрын
Confusedly explained
@MarCamus Жыл бұрын
Changed both bases to ln and after some algebra I got the solution in terms of ln and e
@SyberMath Жыл бұрын
Nice!
@somnathkundu7354 Жыл бұрын
Do the change of base and add the terms.
@SyberMath Жыл бұрын
Good thinking!
@scottleung9587 Жыл бұрын
I got the same answer the first method had.
@Education-356 ай бұрын
My answer is same but another approach First i use reciprocal property To make same base And then take LCM And apply log(a) + log(b) = log(ab) After that Use base changing property And I got answer 2 JEE aspirant 2025 🔥🔥🔥
@GreenMeansGOF Жыл бұрын
change of base is how I would have done it
@SyberMath Жыл бұрын
Great!
@giuseppemalaguti435 Жыл бұрын
x=3^log6(2)
@MrGeorge18966 ай бұрын
I suggest using ln(b) / ln(a) instead of log_a(b). ln(x) (1 / ln(2) +1 / ln(3)) = 1 ln(x) = ln(2) * ln(3) / ln(6) so x = e ^ (ln(2) * ln(3) / ln(6)) = 1.52959...
@GurpreetSingh-PI7 ай бұрын
ELEGANT - spy x family
@popitripodi573 Жыл бұрын
I used the change of base method!!your approach was very good alternative!!!!❤❤❤❤
@SyberMath Жыл бұрын
Great job! 🥰
@aproplayer8581 Жыл бұрын
I too used change of base method.
@rakenzarnsworld2 Жыл бұрын
x = 1.5
@moeberry8226 Жыл бұрын
The fastest way is to use change of bases. So you obtain log(x)/2+log(x)/3. Now just factor out a log(x) and divide by that constant on both sides and then anti log both sides and your done.
@SyberMath Жыл бұрын
Nice! 🤩
@royfeer8651 Жыл бұрын
smart way!
@oahuhawaii21412 ай бұрын
Not correct. The 2 should be log(2), and the 3 should be log(3). The base of the log can be chosen as 2, 3, e, 10, ...
@moeberry82262 ай бұрын
@@oahuhawaii2141 your 100 percent right bro. That’s a typo on my end.
@phongvong8639 Жыл бұрын
It is over I mean they are. Then something has to be prioritised. Please. Thank you.
@jfcrow1 Жыл бұрын
x equal cube root of 3
@gatosimple2354 Жыл бұрын
Profe menos palabras demás,sea más directo
@MichaelRothwell1 Жыл бұрын
In case anyone is wondering, the reason for the rule a^(log꜀b)=b^(log꜀a) is that if you log each side to base c and use the power rule for logs, both sides give log꜀a log꜀b. Putting it another way, c^(log꜀a log꜀b)=(c^log꜀a)^log꜀b=a^log꜀b and c^(log꜀b log꜀a)=(c^log꜀b)^log꜀a=b^log꜀a so a^(log꜀b)=b^(log꜀a).
@Burningarrow713 сағат бұрын
You over complicated it wayyyy too much. I feel sorry for your students