"Negative times negative becomes positive I did a proof on that" Our boi Jens, who proofs our finest dreams
@newkid98075 жыл бұрын
Flammable Maths fuck You
@gustavosedano2945 жыл бұрын
Wheler macarroni?
@ffggddss5 жыл бұрын
Oily macaroni. Fred
@MrRyanroberson15 жыл бұрын
I prefer the geometric proof. it's quite simple: Graph both functions, 1/x and 1/floor(x). ignoring the region between 0 and 1, look at the difference. the functions always meet whenever x is an integer, and each partial difference has its own exclusive y range. Therefore each difference can be moved to be vertically aligned, and they all fit in a unit square.
@willyou21995 жыл бұрын
"gamma = 0.7" ~papa flemmy 2k19
@neilgerace3555 жыл бұрын
By the Fundamental Theorem of Engineering, gamma = 1/sqrt(2)
@davidrheault78965 жыл бұрын
@@neilgerace355 gamma is roughly 1/sqrt(3)
@oni83373 жыл бұрын
@@davidrheault7896 engineer
@SteamPunkLV5 жыл бұрын
I haven't watched your videos in a while, but now that I finally have some time, I decided to check them out. I had completely forgotten how amazing this channel is
@Soepler5 жыл бұрын
it can be shown that this is the constant term of the taylor/laurent expansion of the riemann zetafunction at 1 btw summation by parts would have done the job in 2 lines:)
@kaychimav5 жыл бұрын
Can you elaborate? Sounds promising
@faresmarseille39722 жыл бұрын
@@kaychimav what he is saying is that as x approches 1, zeta(x) can be approximated to 1/(x-1) + gamma i.e. that the limit as x approches 1 of zeta(x) - 1/(x-1) = gamma
@jkid11345 жыл бұрын
This is a brilliant video, really stunningly simply put. And on my birthday no less! Thank you so much for all the work and prep work videos that went into this; I’ve never felt more close to the macaroni number.
@emredogan21024 жыл бұрын
Did you just say APPROXIMATION laughs in engineer:
@funkysagancat32954 жыл бұрын
First vídeo that I see here that is actually really easy to understand
@G_sen_sei5 жыл бұрын
The sequence has a lower bound , monotonically decreasing. It's a nice blackboard! I want to put it in my house. その黒板メッチャいいですね。
@pedrolourenco95205 жыл бұрын
Okay this is epic
@OnamKingtheKing5 жыл бұрын
Wheeler macaroni
@hoodedR5 жыл бұрын
Hi Papa... Greetings from Munich!
@andiback2 жыл бұрын
small correction at 17:48 gamma is about 0.5772, btw you can speed up the calculation of gamma by adding 0.5 within the ln() expression (second convergence order) therefor the formula reads gamma = lim n->inf (H(n) - ln(n+0.5))
@neilgerace3555 жыл бұрын
15:50 Ma Ma Ma Mascherona! With apologies to The Clash
@shacharh54705 жыл бұрын
There's no relation between The Clash and this song, you must have meant another band
@neilgerace3555 жыл бұрын
@@shacharh5470 You are right! The Knack, not The Clash :)
@cubicardi80115 жыл бұрын
-lim- *liー*
@neilgerace3555 жыл бұрын
Li Li Li Li Li Li - Simon and Garfunkel, "The Boxer"
@dexter23925 жыл бұрын
li... *some weird arabic script*
@hamsterdam19423 жыл бұрын
-ln- L
@eladnic5 жыл бұрын
I very much enjoyed this video!
@eliasarguello99615 жыл бұрын
Can you please do a video on the divergence of the sum of the reciprocals of the primes, another video on the convergence of the difference of the sum of the reciprocals of the primes and ln(ln(n)) to the Meissel-Mertens constant, and maybe another video on an integral representation of the Meissel-Mertens constant? They would be fun videos, especially as a follow-up to the recent videos you posted! I can't wait to see them :)
@eliasarguello99615 жыл бұрын
Papa Flammy im dumb and accidentally fixed something in my comment so can you please heart it again? Thanks ❤️
@sarthakvarshney77845 жыл бұрын
Great video once again! Just a minor addition. In your Taylor expansion of ln(1+x), I believe you didn't add the condition that -1
@angelmendez-rivera3515 жыл бұрын
Sarthak Varshney The condition is not necessary since it was stated that n is a natural number, and as such, 1/n necessarily satisfies 0 < 1/n =< 1.
@nishatmunshi46723 жыл бұрын
@@angelmendez-rivera351 was worried about it the whole time. Thanks for explaining
@mohammedal-haddad26525 жыл бұрын
Beautiful argument. Thank you very much.
@avtaras5 жыл бұрын
0:15 Lol the gamma speaks for itself
@farkarf3 жыл бұрын
The way I remember this argument (I think I first saw it on Mathologer) is to remember Dr Flammable's argument for it having a lower bound. That lower bound argument is a comparison of the harmonic series with the integral of 1/x. Here it was established by comparing histograms of unit width with the integral of 1/x over that same interval, much as in introductions to calculus. If the unit width histograms begin (and end) at integer values, then taking the height of each histogram to be the value of 1/x at the end of each interval, one establishes it is bounded from below (as in the video above); conversely, if the height of each unit-width histogram is taken to be the value of 1/x at the *beginning of the interval, then an upper bound can be established. So I guess my point is the construction for the last argument already cuts both ways: for both being bounded from above, and from below.
@vermeerdragyl3415 жыл бұрын
No Nut November. That's not even a problem. Not Math November? HOLY SH*T, I surrender!
@M.Davit6133 жыл бұрын
I have proved this firmness more easily
@maximunnit5 жыл бұрын
you should use a capital sigma as a summation variable
@rome87265 жыл бұрын
I asked for this question months ago and I finally get the answer😂😂. Thanks Papa.
@goncalofreitas20945 жыл бұрын
Very good Papa! Thanks so much for the Wheler-macarroni constant!
@goncalofreitas20945 жыл бұрын
@@PapaFlammy69 :)
@user_27933 жыл бұрын
First time I watched your video in an official capacity. They randomly threw Euler Mjcnwncwn constant at us in diff eqns
@a0z93 жыл бұрын
Ha sido épico. Mas épico será que alguien relacione esta constante con otra constante llamada razón aurea. Ambas ponen en relación los números primos consecutivos de una forma bien concreta que ayudará a desvelar la demostración más épica sobre los números primos.
@emilpysenisoncrack4203 жыл бұрын
1:22 Favorite part of the whole video
@weerman445 жыл бұрын
Such a beautiful proof! Thanks Jens!
@AG-hl7bg5 жыл бұрын
Oh man I love this kind of stuff.
@shrimatkapoor22004 жыл бұрын
Most satisfying video evvvahhh
@PapaFlammy694 жыл бұрын
:33
@bhaveshgohel92495 жыл бұрын
Good proof!
@tetraedri_18344 жыл бұрын
Correction: gamma_n > 1/n does not give strict bound gamma > 0, as gamma could still be zero. Sanity check: 2/n > 1/n, hence in the limit 0>0. ;)
@HasteCS4 жыл бұрын
I’m addicted to these videos and I have no idea what the fuck is going on
@11kravitzn5 жыл бұрын
A somewhat simpler way: gamma_n=H_n-ln(n+1) (n+1 vs. n doesn't matter in the limit) gamma_n=sum from 1 to n [1/k-ln(1+1/k)] As f(x)=x-ln(1+x) is the integral of t/(1+t) from 0 to x, clearly 0
5 жыл бұрын
With your argument you showed that gamma is greater or equal to 0, not strictly greater than 0, because the limit of a strictly positive sequence may be 0.
@brunocaf86564 жыл бұрын
Apparently, you can also derive an identity involving gamma and the zeta function, by expanding that ln(1+1/n) in taylor series, obtaining: gamma = SUMn=2:infty (-1)^n zeta(n) / n
@PapaFlammy694 жыл бұрын
Already made a video on that! :)
@user-kr6bp4zi2y5 жыл бұрын
This guy has the Integerahld-pass
@user-kr6bp4zi2y5 жыл бұрын
aber ohne scheiß, als du gesagt hast "sigma balls" hätt ich beinahe meinen Tee verschluckt
@thephysicistcuber1755 жыл бұрын
That summation variable though
@ozzyfromspace3 жыл бұрын
Papa Flammy: “Good morning my fellow mathematicians” Me: *yawning* how did you know it’s 4:51am EST?
@hakimben80545 жыл бұрын
your videos are amazing !
@hakimben80545 жыл бұрын
@@PapaFlammy69 you are welcome .
@RandomDays9065 жыл бұрын
You also get gamma from taking the limit as h->0 1/2 (zeta(1+h) + zeta(1-h)).
@doodelay4 жыл бұрын
Here's the thing, and I haven't watched the proof yet, but when I just saw this equation pop up in my textbook I got kind of annoyed because infinity - infinity is "SUPPOSED" to be indeterminate. Yet, here we are, taking the difference of two divergent series and (i guess) getting a definite answer. UPDATE: Nvm, I see the constant is found differently than I imagined :o
@PapaFlammy694 жыл бұрын
:)
@douglasstrother65844 жыл бұрын
The Euler-Mascheroni Constant is one crazy number! γ = ∞ - a little smaller ∞ ! mathworld.wolfram.com/Euler-MascheroniConstant.html
@SuperBCRich3 жыл бұрын
you blew my speaker
@maxpercer71192 жыл бұрын
nice to see your'e enjoying math, bringing positive energy to a difficult subject ;o
@justdusty96975 жыл бұрын
i want that shirt
@AlgyCuber4 жыл бұрын
the oil in macaroni constant
@PapaFlammy694 жыл бұрын
:'D
@filippodifranco82255 жыл бұрын
Since you made a video on how to pronounce Deutch scientists names you know how I feel each time you say Masceroni instead of Mascheroni ;-) In Italian ch is equivalent to k as pronounce and it is used together e and i only. So the right pronounce is like it was written Maskeroni.
@فارسالزعبي-ف3د5 жыл бұрын
Thank you very much
@vukstojiljkovic71814 жыл бұрын
Love this video!
@Chefiscool5 жыл бұрын
this was fucking brilliant
@monamahdi49724 жыл бұрын
Great job....thanks
@andrealosardo59735 жыл бұрын
Great video, but pls 4 the italian viewers like me: Mascheroni has an italian pronunciation like "Maskeroni"
@livedandletdie5 жыл бұрын
But Fappable Maths is German so Mascheroni is ma sch eron i.
@hacker2ish3 жыл бұрын
When you did the integral definition and broke up the integral into smaller parts I think the best way to continue the proof is to say that each integral from a to a+1 is less than (a+1 - a) * 1/a becausw 1/a is the largest value on the interval and thus proving that the series is always positive and thus bounded by 0 from below
@timka32445 жыл бұрын
You deserving 1000000000000000000000 subs
@hacker2ish5 жыл бұрын
9:13 right side of the chalkboard looks like an eye
@jameswilson82705 жыл бұрын
Very good video. By the way, the theorem you used is called the Monotone Convergence Theorem (also called the Bounded Monotone Convergence Theorem). I'm not sure why you didn't state that in the video. But anyway, I see what you did there with that trivial statement. You used a nice little trick. All you needed to do, of course, was to note that 1/sigma was greater than or equal to the integrand over all values in the interval, and, therefore, the integral of 1/sigma over the interval is greater than the integral of 1/t. I enjoyed that clever trick though. It shows off the versatility of mathematics arguments.
@MuPrimeMath5 жыл бұрын
Drinking game: take a shot every time Papa says "I'm terribly sorry"
@rot60155 жыл бұрын
Woow I really liked this proof
@rot60155 жыл бұрын
normie ass comment
@dgrandlapinblanc5 жыл бұрын
Et voilà ! Thanks.
@Jack_Callcott_AU2 жыл бұрын
Some interesting facts about the harmonic numbers H_n. Obviously they are always rational, and they increase without bound as n tends to infinity, but no harmonic number, except the first, is an integer...surprising, is it not.
@immersionmusic5 жыл бұрын
Int & GRAAL
@216betto2 жыл бұрын
Oily macaroni!!
@arandomghost88194 жыл бұрын
I like oily macaroni !
@bondarakhanganeh5 жыл бұрын
Nice Gimmel
@helloitsme75535 жыл бұрын
So if I understood correctly, the proof that γ_n+1>γ_n proved that the sequence decreased for all n, and then the other proofs prove that γ_n is bounded between 0 and 1, thus only by the first statement the sequence can either diverge to -∞ or decrease to a constant but the second statement makes sure it does not diverge to -∞ cause that is not between 0 and 1?
@matteodamiano67335 жыл бұрын
Yes
@electric74875 жыл бұрын
Euler Mascheroni constant? More like Oily Macaroni constant!
@pedrolourenco95205 жыл бұрын
What's this constant useful for tho? I've never seen any application of it so far
@FlashBack2B5 жыл бұрын
Actually it appears virtualy everywhere in real analysis. I'd even say that it is the third most important constant of real analysis, below pi and e. It appears for instance in the Weierstrass representation of the Gamma function, in the laurent series of the Riemann Zeta function, and in countless integrals, series and limits
@russellbarnes61115 жыл бұрын
FlashBack2B yeah it’s crazy how often you see it. I want to say it shows up in both the lower bound for the totient function as well as the lower bound of the gap between primes. It shows up in just about everything with prime numbers and I don’t really know why. Probably some connection to the zeta function
@willyou21995 жыл бұрын
Its the principle value of the diverging harmonic series. in essence its like the simplest kind in the "sort of infinite yet finite number" group. That's why it appears in fields where divergences have to be handed, like riemann zeta, feynman integrals
@pedrolourenco95205 жыл бұрын
Today I was able to use this constant to prove a certain area was divergent, the constant technically got cancelled out, but because of its definition I was able to rewrite harmonics series in terms of ln which made everything easier
@caesarinchina3 жыл бұрын
why not use that integral with reciprocals of x, one with the floor function? just interested in seeing how it works actually, seems elegant
@JoseWui5 жыл бұрын
Corporate wants you to find the difference between these two photos.
@PraneshPyaraShrestha4 жыл бұрын
Oily Macaroni
@PlayandGameTV5 жыл бұрын
I got really seri(es) ligma from watching this video
@hoodedR4 жыл бұрын
Is it enough to prove that a limit is bounded to prove that it exists?? sin x is bounded between [-1,+1] but obviously l(squiggles)x->inf sinx doesn't exist
@PapaFlammy694 жыл бұрын
Nah, being bounded it not enough! (squiggle xD that made me lel :D)
@cecilhenry99085 жыл бұрын
Is the only way to calculate EM just brute force???
@esdrasmunizmota89335 жыл бұрын
You can prof this using Just the unequality: exp(x)>=x+1 for all real valeu of x.
@peterjohnson48545 жыл бұрын
When the constant is a meme itself...
@peterjohnson48545 жыл бұрын
Papa noticed me. I feel like a convergent boi
@atrimandal43245 жыл бұрын
Oh my god :O
@soumaknandi92184 жыл бұрын
YOU'RE NOT GONNA FIND THE MACARONI VALUE YOURSELF?! smh my head
@leonalmeida2411 Жыл бұрын
I'm doing a school project, I would like to know where did you find this proof (or if you come up with it)
@avdrago71705 жыл бұрын
17:49 Gamma is actually around 0.577
@dannygjk5 жыл бұрын
Easy way to remember the decimal value (roughly) is tan 30 degrees :)
@travorliu11924 жыл бұрын
Hi Papa, would u like to create a video that proves the convergence of Stieltjes constants
@matkach2005 жыл бұрын
Can you do some Quantum Chromodynamics?
@otonanoC3 жыл бұрын
Lorenzo Mascheroni was Italian. There is no "sh" sound in his name. It is MASS-KAIR-RONI.
@FitR_MusicProductions5 жыл бұрын
Ay y’all ever heard of that wheeler-macaroni constant?
@priyanshubansal67763 жыл бұрын
at 11:09 what he said i didn't get . what language he was using ?
@MathEnthusiast-od8yu10 ай бұрын
I think to show that the sequence is bounded above are unnecessary bec ause the sequence are decreasing
@RetroGamingClashOfClans4 жыл бұрын
cant you show the derivative is approaching zero as input increases so it just means its approaching to a stop at some value of convergence...
@gamma_dablam4 жыл бұрын
Derivative approaching zero doesn't imply convergence to a finite limit. Case in point the natural log function
@jksmusicstudio14395 жыл бұрын
lel, this was on my calc 2 exam QQ
@jarahfluxman202 жыл бұрын
Jens: Lauer bound... ajf besser als ich in Deutsch, der "wachsen" und "wichsen" verwechselte.
@shambosaha97274 жыл бұрын
17:51 Did you prove that γ is an irrational number? Because nobody ever has managed to prove it, as far as I know.
@PapaFlammy694 жыл бұрын
nope
@zoltankurti4 жыл бұрын
The lebesgue measure of Q is 0. So if you pick a random number it's irrational. Gamma has a stupid random definition, so gamma itself is random. Gamma is irrational.
@shambosaha97274 жыл бұрын
@@zoltankurti You should totally publish this and get a Fields Medal or somethin'.
@zoltankurti4 жыл бұрын
@@shambosaha9727 I don't have time for that. Right now I'm checking all the non trivial zeros of the zeta function to infinite decimal digits precision by hand to finally be done with this dumb riddle people keep talking about.
@Gamma_Digamma4 жыл бұрын
Euoli Maschener
@bandamkaromi5 жыл бұрын
Frankly speaking, I could not trace this topic in subway. watch again. :'(
@edwardlatt73834 жыл бұрын
did not prove the limit.. and the EM constand is not .7.. it's .577... 0.57721566490153286060651209008240243104215933593992.. to be exact
@nuklearboysymbiote5 жыл бұрын
Oily macaroni
@lional10105 жыл бұрын
Thanks alot for do my favorite line as clear 😚😚😚😚 but there other thing is on board please please zoom it using pubg mobile scope 😂😂😂😂😂 yes thanks alot again