Time Series Talk : What is Seasonality ?

  Рет қаралды 62,926

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 37
@charliemyer857
@charliemyer857 4 жыл бұрын
Good introductory/reference explanation. Thank you!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@cicidu8577
@cicidu8577 2 жыл бұрын
This series is so good. Thank you so much!
@nickkoprowicz4831
@nickkoprowicz4831 4 жыл бұрын
Thanks for these videos; they're helpful. But I think one big thing is missing which is what we're actually trying to model. We've seen what's bad (trend and seasonality) but I think it would be good to have an example of what's good. What would an ideal stationary time series look like? And how would the model come out?
@yuthpatirathi2719
@yuthpatirathi2719 5 жыл бұрын
Amazing work Ritvik
@BraIncNet
@BraIncNet 3 жыл бұрын
Amazing, simple explanation. Thank you.
@akyuvar8121
@akyuvar8121 5 жыл бұрын
hi, can you sort the videos according to series. Ironically, i cant figure out which time series video i should watch first.
@ritvikmath
@ritvikmath 5 жыл бұрын
Just sorted them! Thanks for the reminder 😊
@amybae6087
@amybae6087 2 жыл бұрын
Very easy to understand. Thank you so much
@siddhant17khare
@siddhant17khare 2 жыл бұрын
Is it so that ADF & KPSS tests check only for trend-stationarity & therefore, it is possible for ADF & KPSS tests to show that the time series is trend-stationary but still has seasonality in it? If yes, then what are tests to check seasonality-stationary?
@yuvarajum2594
@yuvarajum2594 7 ай бұрын
Fantastic explanation
@rumikang33
@rumikang33 4 жыл бұрын
Dude, thank you so much.
@fadimessi10
@fadimessi10 8 ай бұрын
awsome explanation!
@ayanbizz
@ayanbizz 4 жыл бұрын
From the video it seems seasonality means yearly repeating patterns but what if the patterns repeat every week / month/ 3 moths /6 months etc
@jacobm7026
@jacobm7026 4 жыл бұрын
The main importance is simply that it is a nonrandom component that can be addressed with a model. The yearly unit is truly arbitrary.
@luismisanmartin98
@luismisanmartin98 7 ай бұрын
When he says "within a year" he just meant that the pattern doesn't have a period longer than a year (which would then be considered a cycle). Therefore, as he said at the beginning, the cycle could be a year but also a month, a week or even a day
@nambuihoai8222
@nambuihoai8222 5 жыл бұрын
Could you make a video explaining a vector autoregression model?
@rajdeepgdgd
@rajdeepgdgd 4 жыл бұрын
kzbin.info/www/bejne/i4K0eYaYmq6UeJI
@md1086
@md1086 2 жыл бұрын
Can we use ARIMA model for seasonality predictions like electricity consumption predictions, or we should remove seasonality before applying ARIMA
@AkshayDhande45
@AkshayDhande45 3 жыл бұрын
so in order to know whether a pattern is seasonal, you would need at least two years of data right? If you have one year of data and no matter how smooth sign wavy it looks, you cant call it seasonal? I mean one cant look at data for a year and say this pattern looks seasonal. correct?
@drmearajuddin2334
@drmearajuddin2334 4 жыл бұрын
Sir please a video on Johnsens cointegration.. Please.. Detailed one.. You are amazing sir ❤️❤️❤️❤️
@aimdam1528
@aimdam1528 5 жыл бұрын
Nice Insights!
@ritvikmath
@ritvikmath 5 жыл бұрын
thanks! always happy to help out :)
@conorsmyth12358
@conorsmyth12358 3 жыл бұрын
What if there is a fixed length cycle with period greater than a year, a decade for instance?
@francisguan2550
@francisguan2550 3 жыл бұрын
Yea I was thinking 4 years, like search data for the Olympics for example. But I think even so, we should be able to apply the same concept to remove the effect of these repeating patterns on our time series data. So long as we have sufficient cycles of data of course (in your example, a few decades)
@safaa3618
@safaa3618 6 ай бұрын
i think Z(t) = Y(t) - Y(t-365). This would also track with the example of 2015 that we can't use. cuz if we use Z(t) = Y(t+365) - Y(t), we can totally replace it with 2015. Also the differenciation to remove seasonality (I in ARIMA) is given by : Y'(t) = Y(t) - Y(t-1).
@eswararun7255
@eswararun7255 4 жыл бұрын
How to find seasonality or determine m value if we have 3 or 6 months of data ?
@TheOrionMusicNetwork
@TheOrionMusicNetwork 3 жыл бұрын
You simply don't have enough data in that case
@mohitgehlot6582
@mohitgehlot6582 6 ай бұрын
Thank you so much.
@bharathgopalakrishnan3739
@bharathgopalakrishnan3739 2 жыл бұрын
How about a video on Expectations
@elenadelonge3987
@elenadelonge3987 2 жыл бұрын
where there is the start of 2015/2016/2017.. and so on, the curve should be lower and not higher because of the winter period.the start of the year,2015,is the 1/01/yyyy and not the summer
@raltonkistnasamy6599
@raltonkistnasamy6599 8 ай бұрын
thank u sir
@zoozolplexOne
@zoozolplexOne 3 жыл бұрын
Cool !!!
@fpodunedin3676
@fpodunedin3676 8 ай бұрын
Note to self: Seasonality is when a pattern repeats in a given week or year. Seasonal data is not stationary but can be made so. This is through taking z_t = y_t - y_(t-365). Similar process to de-trending data. Note that seasonality is not the same as cycles. Cycles are usually over the course of multiple years!
@neetijain4055
@neetijain4055 2 жыл бұрын
Y
@zes3813
@zes3813 4 жыл бұрын
wr
Time Series Talk : Seasonal ARIMA Model
11:33
ritvikmath
Рет қаралды 121 М.
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 300 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Complete Time Series Analysis and Forecasting with Python
6:17:35
Data Heroes
Рет қаралды 3,3 М.
What is Stationarity
5:01
Aric LaBarr
Рет қаралды 82 М.
What is Time Series Decomposition
4:54
Aric LaBarr
Рет қаралды 60 М.
Why Are Time Series Special? : Time Series Talk
8:05
ritvikmath
Рет қаралды 245 М.
What is Time Series Analysis?
7:29
IBM Technology
Рет қаралды 254 М.
Trends, Seasonality, and Cyclicity
3:39
Vafa Saboori
Рет қаралды 7 М.
20 What is Seasonal Adjustment?
8:20
Mark Angelo
Рет қаралды 3,6 М.
Maths Tutorial: Seasonal Indices (Seasonal Index)
19:50
Further Maths
Рет қаралды 152 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН