Check out my new course in Propositional Logic: trevtutor.com/p/master-discrete-mathematics-propositional-logic It comes with video lectures, text lectures, practice problems, solutions, and a practice final exam!
@JuanDeSouza75 жыл бұрын
4:49 "I don't know how we call this... whatever, I'll say it's a negation." The most sincere teacher ever! hahahah
@محمد-م5ث1ش3 жыл бұрын
He really is funny
@t0khyo3 жыл бұрын
@@محمد-م5ث1ش also you are a joke bro
@t0khyo3 жыл бұрын
@@محمد-م5ث1ش are u studying at Tanta University?
@esmaerlefrankie85154 жыл бұрын
my lecturer really leaves it up to us to study for discrete structure so YOU ARE A GOD SENT THANK YOU MAN
@marielkayeorlido16416 жыл бұрын
Hello! I'm taking up Discrete Structures now, and I'm reaaaaally thankful for your videos! Your explanations are easy to understand! Thank you so much!
@nooneg42332 жыл бұрын
At 2:15 theres a mistake ,indempodent law is used which states that :PVP==P,P^P==P so for P^(P^Q) ,we arrange it as( P^P)^Q as due to indempotent law P^P==P, so our conclusion is (P^Q) & next is so on with the video ..Btw thank you sir your videos are lifesaver🤍
@corporalwaffles8 жыл бұрын
At 2:14, I think it's supposed to be idempotent law
@AlexThaBird6 жыл бұрын
It is - for people who comes by and read this. Use Idempotent here. It is notated: p ∧ p p. Thank you for pointing that out.
@alijonemerchant27933 жыл бұрын
@@AlexThaBird Thank you, that helped a lot! I would like to add that this law works both for AND and OR!
@bestyoueverhad.24083 жыл бұрын
i had first applied associative and then claimed redundance but thanks for reminding me of indempotence
@johnangeloperez98664 жыл бұрын
so can we say that q -> q T is a definition by itself, like if A, then A is always TRUE?
@aboutthereality1796 жыл бұрын
Thank You Trev for these examples.
@darwinmanalo49348 жыл бұрын
This is very helpful. Please do some examples (problems and solutions) for Venn Diagram. Thank you :)
@shubhamgoswami37224 жыл бұрын
~(p + q) + (~p × q) equivalent to ~p Prove it by laws + For or x for and ~ for negation
@louis91164 жыл бұрын
7:38 the most elegant phi I've ever seen
@dichocolate4 жыл бұрын
holy fuk
@christophermalecki97723 жыл бұрын
This video is super helpful. Question, can't you just say that (Q implies Q) is a T?
@char_nette11 ай бұрын
You still need an answer?
@SO-oy2li8 жыл бұрын
One question. For the first example step 3, (p & q) v ((p & q) & not p) for the second bracket set, since it's pretty associative, can we really just remove the brackets inside and think of it as (p & q & not p) as well?
@Trevtutor8 жыл бұрын
Yes, we can. I keep them in for illustrative purposes so it's clear why I can use the laws I do. Some instructors may also require you to keep those there, but you don't really need them.
@nishantbisht42963 жыл бұрын
@@Trevtutor how you write false after this line . i.e., where is q????
@rdzsystem12214 жыл бұрын
thank you bro
@everchann2 жыл бұрын
what's the definition of the arrow?
@edberaga63574 жыл бұрын
I don't understand the distribution law with different connectives at 3:38 ... can you explain more...?
@XeroKG2 жыл бұрын
he took the whole second bracket of (P and Q) and distributed it on each element of the first bracket
@murigig5 жыл бұрын
I think your videos should be in the syllabus 😂😂 Just saying 😪✌️
@C0URE4 жыл бұрын
Question; are we allowed to have not p v p, or is this rule strictly for not p and p?
@Snoopfrogg.7 жыл бұрын
Do you have any videos on Rules of Inference?
@Carrymejane9 ай бұрын
Before this video in the playlist
@raphaelgeronimo Жыл бұрын
6:06 what even is "definition of the arrow"? I don't think I encountered it in your videos...
@ES506785 жыл бұрын
Is the law of the excluded middle the same as the inverse law? In a previous video where you defined the laws, you defined the inverse law as: P V -P = T, which at 7:00 you use but write it down as the law of the excluded middle.
@Ackk5674 жыл бұрын
P v (~p ^ q ) can i use absorb law and the result is ~p . Is that true??
@RobinHood-eu4er7 жыл бұрын
is there a way to figure out quickly which law i should use in every step ? because i always get stuck and cant simplify it seems very complicated !
@Trevtutor7 жыл бұрын
It's really just practice and pattern recognition. Do DeMorgan's when you can, distributive when you can, and then check to see when others apply.
@nightravels40286 жыл бұрын
I struggled with this too. For example in this video's first question, when applying DeMorgan's law, it looked as if it could be applied to ~ (~ (p ^ q) rather than the whole thing, so you would have ~ ( ~ (p ^ q) v r ~ ( ~p v ~q) v r. Which in turn seems like it can be double negated to get (p v q) v r. But I drew the truth tables for both this answer and your correct answer and they are not logically equivalent, so clearly I used the laws incorrectly. Would you possibly be able to explain why this is an incorrect application of DeM's and how you should know how to use it like you did. Should it always be applied to the entire wff, rather than just part of it? Other than that, I can't express my thanks enough for these videos. They're absolutely fantastic, and such a huge help for my degree. Don't stop teaching!
@djswagmac77637 жыл бұрын
At 5:12 can you just use the absorption law for step 4?
@Trevtutor7 жыл бұрын
Yes. Some professors don't allow Absorption as a given law, though, so it's good to show it the long way.
@sarkersaadahmed Жыл бұрын
3:35 why isnt the first one idempotant law
@kodymyler3047 жыл бұрын
do you have anything on Boolean Alg?
@perpetualmamaba37502 жыл бұрын
qustion, for the second example, couldnt you have used the Absorbtion law for the p^(p^q))?
@perpetualmamaba37502 жыл бұрын
nevermind, i just realized the signs have to differ
@nooneg42332 жыл бұрын
@@perpetualmamaba3750 bro🤍 ,indempodent law is used which states that :PVP==P,P^P==P so for P^(P^Q) ,we arrange it as( P^P)^Q as due to indempotent law P^P==P, so our conclusion is (P^Q) & next is so on with the video ..
@asilvap6 жыл бұрын
The result of the first example wouldnt make that expression ambiguos since there is no parentheses?
@Trevtutor6 жыл бұрын
If the operators are all "and" or "or" then it's fine to omit the brackets due to associativity and commutativity.
@asilvap6 жыл бұрын
Thanks!!
@pexma7 жыл бұрын
5:04 isn't it Inverse law? p ^ -p = F
@abdifatahmoh3 жыл бұрын
Yes it's.
@ulysses_grant Жыл бұрын
0:41 when you see emojis everywhere.
@MrKB_SSJ2 Жыл бұрын
1:37
@kennytran38165 жыл бұрын
What are the hard brackets symbolizing in "not[(p and q) -> r]" ?
@razeer12324 жыл бұрын
Just another type of brackets functioning the same way as ( ... ). He used different brackets so people don't get confused.
@ericgutierrez3474 жыл бұрын
I FUCKING appreciate you!
@MrKB_SSJ2 Жыл бұрын
0:00
@e2k2204 ай бұрын
thanks xqcL
@bekkiiboo6197 жыл бұрын
I'm having some trouble finding the intuition behind: p-->q = ~p v q.
@Trevtutor7 жыл бұрын
You can solve this with a truth table or with the semantics of the conditional. p->q is true if p is false or q is true. That's the same as ~p v q.
@bekkiiboo6197 жыл бұрын
I appreciate your reply so much! I understand I can use the truth table, but I want more than just the computational abilities... How does this sound: The conclusion is true if p is false, automatically. This is so, because with p being false, q can be false and the statement holds true still. OR Q can be true and the statement still holds true.
@LiyosiCollins6 жыл бұрын
@@bekkiiboo619 I usually not try to get the intuition for p-->q = ~p v q because: - Once I get the intuition for p -> q statement, then, for its other logically equivalent statements, I always defer to using symbolic manipulations to arrive at them, without bothering to understand the intuition for them. This is so because symbolic manipulations sometimes results into some statements that are just hard to reason about