weierstrass substitution for integrations, intro

  Рет қаралды 88,088

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 71
@NGBigfield
@NGBigfield 7 жыл бұрын
Erasing the board in an instant. you are a pro!
@Koisheep
@Koisheep 6 жыл бұрын
I studied this method both in high school and college but now I'm told it has a name
@aryanks2167
@aryanks2167 4 жыл бұрын
its prolly easier to remember with a name
@maalikserebryakov
@maalikserebryakov Жыл бұрын
@@aryanks2167yep
@CDChester
@CDChester 6 жыл бұрын
I must say that most professors I meet absolutely hate this method. I have loved using it. I show the kids I tutor this method early on in Calculus (after teaching identities). It makes Calculus much easier in my opinion. As well I love how you were saying Double as Daaable. I say that too now and my students get a kick out of it. Overall, thanks for the video BPRP! #muchlove
@Emily-fm7pt
@Emily-fm7pt Жыл бұрын
It's just so ugly though, I can see why your profs would hate it lmao
@maalikserebryakov
@maalikserebryakov Жыл бұрын
@@Emily-fm7pt cry . Can’t do simple algebra? And if you hate it so much then try the Rules of Bioche Firstly let the rational trig integrand = w(t) and do a couple of tests Test 1 - Positive phase shift invariance If w(pi+t) = w(t) Then u=tan(x) will ALWAYS be a good substitution Test 2 - Negative Phase Shift Invariance if w(pi - t) = w(t) then U= Sin(x) will always be a good sub Test 3 - Negative Argument invariance If w(-x) = w(x) then u=cos(x) is always a good substitution. 4 -If TWO invariances are shown, then u=cos(2t) is also always a good substitution If none of this applies, THEN use weierstrass This is is the most expedient and logical method of approaching a trigonometric rational structure. The reason it works is because TRIG functions are Periodic so all you have to do is exploit their phase shift invariances The fact trig is periodic SHOULD mean we get another insight into solving/integrating it right? Compared to non periodics like polynomials at least.
@rkusuma6852
@rkusuma6852 Жыл бұрын
damn, someone got burnt down here.
@ageofkz
@ageofkz 8 жыл бұрын
extremely clear! Way clearer than the wiki article. Thanks for the video 👍
@jesushernandez6944
@jesushernandez6944 Жыл бұрын
eres un excelente profesor de matemática y se te ve pasión que sientes por la matemática. Gracias por tan didáctico y grandioso canal.
@ruskodudesko9679
@ruskodudesko9679 8 жыл бұрын
right off the bat - I love you mic I love you enthusiasm and I love your voice, I'm gonna watch lol - I hate math tutors that suck and you sir do not
@trinoromo6619
@trinoromo6619 4 жыл бұрын
What kind of sorcery is this!? Thank you.
@OptiInfo00
@OptiInfo00 Жыл бұрын
I remember when my professor teach me this in class, in that moment I just thought he was some kind a genius; then when I did the demostration myself I feel like a genius, and now watching your video I remembered all that 👍
@plaustrarius
@plaustrarius 6 жыл бұрын
This is such a serious concept, it directly gives pythagorean triples and a rational parameterization of the circle basically given the original substitution (t = tan(x/2)) and some good trig skills. the dx part is clever for sure, thats more about functional analysis so definitely within the grasp of a precalc student, but I would love to see the original motivation Weierstrass had to find this method, or if its simply attributed to his name. I would guess because it simply gives a nice set of relationships with all of the variables, t, x, sinx, cosx, etc. and an analytic geometry sort of perspective on the problem, like a foothold where no relationships seemed to exist.
@jimjam1948
@jimjam1948 6 жыл бұрын
He never even used it in his worm. It was named after home but the earliest use of the substitution is in the work of the one and only Leonhard Euler
@plaustrarius
@plaustrarius 6 жыл бұрын
The one and only hahaha everything is named after him and even things that aren't he probably discovered or made famous XD Where is our next Euler?!
@jimjam1948
@jimjam1948 6 жыл бұрын
@@plaustrarius Ikr. Early kyler I need you to rise up and become our next Euler
@nottoday3817
@nottoday3817 6 жыл бұрын
I have an exam tomorrow. You might have just saved my life
@mabindisarorisang
@mabindisarorisang 7 жыл бұрын
Oh what the!! I get it now. Thanks so much, this was helpful
@AndDiracisHisProphet
@AndDiracisHisProphet 7 жыл бұрын
Weierstraps :D Your videos are absolutely brilliant.
@holyshit922
@holyshit922 8 жыл бұрын
Argument of tangent can be shifted by a constant value For example to calculate integral of secant using this substitution , we can shift argument of tangent by \frac{\pi}{4} to get less calculations I think that he should draw bisector of one of the acute angles Try to use this substitution with inverse trig substitution/
@aggbak1
@aggbak1 6 жыл бұрын
Jacek Soplica LaTex does not work on youtube
@ecehanvergiliel2672
@ecehanvergiliel2672 6 жыл бұрын
THANK YOU SO MUCH!!! It helped verrryyyy wellll :))
@burkay9133
@burkay9133 6 жыл бұрын
nasıl geçti sınavın
@llll3073
@llll3073 3 жыл бұрын
رحم الله والديك
@EpicMethGaming
@EpicMethGaming 5 ай бұрын
why is this so menacing wtf
@vaibhav8090
@vaibhav8090 5 жыл бұрын
Nicely explained sir!
@ssdd9911
@ssdd9911 5 жыл бұрын
is there another version that involves hyperbolic functions?
@robertolasagna1212
@robertolasagna1212 2 жыл бұрын
great video. i love the mic as well
@MikeB3542
@MikeB3542 3 жыл бұрын
The "sneakiest substitution"!
@holyshit922
@holyshit922 7 жыл бұрын
Calculations needed for Weierstrass substitution are comparable to the Euler substitutions You showed Weierstrass substitution but Euler substituton only on one example There are three Euler's substitutions but two of them (with leading coefficient and with real roots) will be enough to cover all integrals in the form R(x,sqrt(ax^2+bx+c))
@maalikserebryakov
@maalikserebryakov Жыл бұрын
Why ever use euler sub Just complete square
@npola3713
@npola3713 Жыл бұрын
There is an identity: tan(x/2)=sqrt([1-cos(x)]/[1+cos(x)]), which makes it easier to draw a triangle rather than using double angle formula everytime you want to find sin(x), cos(x).
@johnhwhittaker6005
@johnhwhittaker6005 4 жыл бұрын
Skill unlocked
@blackpenredpen
@blackpenredpen 4 жыл бұрын
John H Whittaker nice!
@williamvlidel3497
@williamvlidel3497 7 жыл бұрын
Hi sir, may I ask, if you treat tan(x/2)=t and then draw a right triangle, with 1 as the adjacent side. Won't it be valid only for quadrant I and IV since cosine is positive only in those quadrant. Or is tan(x/2)=t true for all quadrant, but why? since the adjacent side is only 1 and the only side that can be +/- is the opposite side with the variable t. Thanks!
@015Fede
@015Fede 6 жыл бұрын
William Vlidel this is just an intuition on how to get the other functions. The more rigorous way would be to apply known trig identities
@ianmoseley9910
@ianmoseley9910 6 жыл бұрын
If you have an indefinite integral you can choose to solve for first quadrant.
@ernestschoenmakers8181
@ernestschoenmakers8181 5 жыл бұрын
Steve you're the new Harry Potter.
@MathZoneKH
@MathZoneKH 3 жыл бұрын
Pretty good sir
@lostwisdom8900
@lostwisdom8900 7 жыл бұрын
Awesome! Is there a video in your channel where you explain the t = tanx formula too? Thanks for all your work.
@ionlycommentwhenitsnecessa5906
@ionlycommentwhenitsnecessa5906 6 жыл бұрын
If tan(x/2) = t, wouldn't arctan(t) = x/2, instead of ctg(t) = x/2?
@EarlyMonAF
@EarlyMonAF 5 жыл бұрын
In our notation, tan¯¹(x) is arctan(x) and not ctg as you would expect. He did a recent video about the confusion that the notation causes so you are definitely not alone. The (F)¯¹ = arcF notation is not logical but we're stuck with it. Btw, ctg is cot for us.
@erwinrojasarabia
@erwinrojasarabia 7 жыл бұрын
So beautiful video
@bizarrapmusic
@bizarrapmusic Жыл бұрын
i don't seem to understand how you formed the right triangle? like why did you make t the oposite side ?
@Private_Username007
@Private_Username007 Жыл бұрын
Because tan x = opposite side/adjacent side. So t is the opposite side and 1 is the adjacent side
@Virendersinghawanagood
@Virendersinghawanagood 6 жыл бұрын
thanks from vs gujjar India
@deepakm9342
@deepakm9342 8 жыл бұрын
Clearly explained thank u !!!!
@vlix123
@vlix123 7 жыл бұрын
for cosx couldn’t you use difference of squares to end up with cosx=1-t
@Rehan-ld1zw
@Rehan-ld1zw 6 жыл бұрын
no you can't. (1+t)(1-t)(1+t^2); (1+t^2) is not equal to (1+t)^2
@calimaulud5708
@calimaulud5708 4 жыл бұрын
My teacher told that there are actually 100+ formula for integral and I want to know and study them.
@herberthubert6828
@herberthubert6828 5 жыл бұрын
amazing!! thank you!
@user-yg97f5hfvh
@user-yg97f5hfvh 4 жыл бұрын
how about x/2 is over ㅠ/2 ?
@domc3743
@domc3743 4 жыл бұрын
this is the best thank you
@genologic210
@genologic210 2 жыл бұрын
it is every clear you are the best
@user-mv4ix7jd8o
@user-mv4ix7jd8o Жыл бұрын
What just happened on 3:31? I don't see the connection between sin(2*x/2) and 2sin(x/2)cos(x/2)
@jomariraphaellmangahas1991
@jomariraphaellmangahas1991 9 ай бұрын
Double Angle Identity
@yannickescalera3231
@yannickescalera3231 4 жыл бұрын
Super nice!
@user-bz7ct3iu3v
@user-bz7ct3iu3v 3 жыл бұрын
But why tan(x/2)?
@fyrerayne8882
@fyrerayne8882 2 жыл бұрын
Brilliant
@suhaybseeman4699
@suhaybseeman4699 4 жыл бұрын
thanks teacher
@miyamotomusashi4556
@miyamotomusashi4556 2 жыл бұрын
If one watches this video carefully, they will see a very elegant method to find sin ( arctan(x) ) !
@jamesnitsuga4985
@jamesnitsuga4985 3 жыл бұрын
Are u singaporean?
@9909faisal
@9909faisal 6 жыл бұрын
wow thank you man,just WOW
@andreapaps
@andreapaps 4 жыл бұрын
I donno whats cooler the maths or the moustache :D
@davidlue3082
@davidlue3082 4 жыл бұрын
why not use 1-sin~2=cos~2 so cos= t`2-1/ 1+t~2 is not same to yours
@matokurin
@matokurin 2 жыл бұрын
great great great
@holyshit922
@holyshit922 6 жыл бұрын
In fact we can draw other triangle to illustrate this substitution I created puzzle which shows substitutions which rationalize integrands in the form R(x,sqrt(ax^2+bx+c)) because it is two in one substitution (inverse trig substitution and shifted Weierstrass substitution)
@noway2831
@noway2831 4 жыл бұрын
weirdass substitution
@mangojuic3e
@mangojuic3e 3 жыл бұрын
vielen dank meine kerle
A Putnam Exam Integral from 1980
10:51
blackpenredpen
Рет қаралды 121 М.
Integrating by Weierstrass Substitution (visual proof)
4:46
Mathematical Visual Proofs
Рет қаралды 10 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Feynman technique: integral of (x-1)/ln(x) from 0 to 1
14:32
blackpenredpen
Рет қаралды 135 М.
how Weierstrass would integrate csc(x)
13:30
blackpenredpen
Рет қаралды 46 М.
Feynman's Technique of Integration
10:02
blackpenredpen
Рет қаралды 593 М.
Understand u-substitution, the idea!
12:31
blackpenredpen
Рет қаралды 191 М.
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 429 М.
You probably haven't solved a quartic equation like this before!
12:59
integral of sqrt(x^2+1), with Euler Substitution, math for fun
20:42
blackpenredpen
Рет қаралды 425 М.
integral of x^2/(xsin(x)+cos(x))^2
11:39
blackpenredpen
Рет қаралды 598 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН