I studied this method both in high school and college but now I'm told it has a name
@aryanks21674 жыл бұрын
its prolly easier to remember with a name
@maalikserebryakov Жыл бұрын
@@aryanks2167yep
@CDChester6 жыл бұрын
I must say that most professors I meet absolutely hate this method. I have loved using it. I show the kids I tutor this method early on in Calculus (after teaching identities). It makes Calculus much easier in my opinion. As well I love how you were saying Double as Daaable. I say that too now and my students get a kick out of it. Overall, thanks for the video BPRP! #muchlove
@Emily-fm7pt Жыл бұрын
It's just so ugly though, I can see why your profs would hate it lmao
@maalikserebryakov Жыл бұрын
@@Emily-fm7pt cry . Can’t do simple algebra? And if you hate it so much then try the Rules of Bioche Firstly let the rational trig integrand = w(t) and do a couple of tests Test 1 - Positive phase shift invariance If w(pi+t) = w(t) Then u=tan(x) will ALWAYS be a good substitution Test 2 - Negative Phase Shift Invariance if w(pi - t) = w(t) then U= Sin(x) will always be a good sub Test 3 - Negative Argument invariance If w(-x) = w(x) then u=cos(x) is always a good substitution. 4 -If TWO invariances are shown, then u=cos(2t) is also always a good substitution If none of this applies, THEN use weierstrass This is is the most expedient and logical method of approaching a trigonometric rational structure. The reason it works is because TRIG functions are Periodic so all you have to do is exploit their phase shift invariances The fact trig is periodic SHOULD mean we get another insight into solving/integrating it right? Compared to non periodics like polynomials at least.
@rkusuma6852 Жыл бұрын
damn, someone got burnt down here.
@ageofkz8 жыл бұрын
extremely clear! Way clearer than the wiki article. Thanks for the video 👍
@jesushernandez6944 Жыл бұрын
eres un excelente profesor de matemática y se te ve pasión que sientes por la matemática. Gracias por tan didáctico y grandioso canal.
@ruskodudesko96798 жыл бұрын
right off the bat - I love you mic I love you enthusiasm and I love your voice, I'm gonna watch lol - I hate math tutors that suck and you sir do not
@trinoromo66194 жыл бұрын
What kind of sorcery is this!? Thank you.
@OptiInfo00 Жыл бұрын
I remember when my professor teach me this in class, in that moment I just thought he was some kind a genius; then when I did the demostration myself I feel like a genius, and now watching your video I remembered all that 👍
@plaustrarius6 жыл бұрын
This is such a serious concept, it directly gives pythagorean triples and a rational parameterization of the circle basically given the original substitution (t = tan(x/2)) and some good trig skills. the dx part is clever for sure, thats more about functional analysis so definitely within the grasp of a precalc student, but I would love to see the original motivation Weierstrass had to find this method, or if its simply attributed to his name. I would guess because it simply gives a nice set of relationships with all of the variables, t, x, sinx, cosx, etc. and an analytic geometry sort of perspective on the problem, like a foothold where no relationships seemed to exist.
@jimjam19486 жыл бұрын
He never even used it in his worm. It was named after home but the earliest use of the substitution is in the work of the one and only Leonhard Euler
@plaustrarius6 жыл бұрын
The one and only hahaha everything is named after him and even things that aren't he probably discovered or made famous XD Where is our next Euler?!
@jimjam19486 жыл бұрын
@@plaustrarius Ikr. Early kyler I need you to rise up and become our next Euler
@nottoday38176 жыл бұрын
I have an exam tomorrow. You might have just saved my life
@mabindisarorisang7 жыл бұрын
Oh what the!! I get it now. Thanks so much, this was helpful
@AndDiracisHisProphet7 жыл бұрын
Weierstraps :D Your videos are absolutely brilliant.
@holyshit9228 жыл бұрын
Argument of tangent can be shifted by a constant value For example to calculate integral of secant using this substitution , we can shift argument of tangent by \frac{\pi}{4} to get less calculations I think that he should draw bisector of one of the acute angles Try to use this substitution with inverse trig substitution/
@aggbak16 жыл бұрын
Jacek Soplica LaTex does not work on youtube
@ecehanvergiliel26726 жыл бұрын
THANK YOU SO MUCH!!! It helped verrryyyy wellll :))
@burkay91336 жыл бұрын
nasıl geçti sınavın
@llll30733 жыл бұрын
رحم الله والديك
@EpicMethGaming5 ай бұрын
why is this so menacing wtf
@vaibhav80905 жыл бұрын
Nicely explained sir!
@ssdd99115 жыл бұрын
is there another version that involves hyperbolic functions?
@robertolasagna12122 жыл бұрын
great video. i love the mic as well
@MikeB35423 жыл бұрын
The "sneakiest substitution"!
@holyshit9227 жыл бұрын
Calculations needed for Weierstrass substitution are comparable to the Euler substitutions You showed Weierstrass substitution but Euler substituton only on one example There are three Euler's substitutions but two of them (with leading coefficient and with real roots) will be enough to cover all integrals in the form R(x,sqrt(ax^2+bx+c))
@maalikserebryakov Жыл бұрын
Why ever use euler sub Just complete square
@npola3713 Жыл бұрын
There is an identity: tan(x/2)=sqrt([1-cos(x)]/[1+cos(x)]), which makes it easier to draw a triangle rather than using double angle formula everytime you want to find sin(x), cos(x).
@johnhwhittaker60054 жыл бұрын
Skill unlocked
@blackpenredpen4 жыл бұрын
John H Whittaker nice!
@williamvlidel34977 жыл бұрын
Hi sir, may I ask, if you treat tan(x/2)=t and then draw a right triangle, with 1 as the adjacent side. Won't it be valid only for quadrant I and IV since cosine is positive only in those quadrant. Or is tan(x/2)=t true for all quadrant, but why? since the adjacent side is only 1 and the only side that can be +/- is the opposite side with the variable t. Thanks!
@015Fede6 жыл бұрын
William Vlidel this is just an intuition on how to get the other functions. The more rigorous way would be to apply known trig identities
@ianmoseley99106 жыл бұрын
If you have an indefinite integral you can choose to solve for first quadrant.
@ernestschoenmakers81815 жыл бұрын
Steve you're the new Harry Potter.
@MathZoneKH3 жыл бұрын
Pretty good sir
@lostwisdom89007 жыл бұрын
Awesome! Is there a video in your channel where you explain the t = tanx formula too? Thanks for all your work.
@ionlycommentwhenitsnecessa59066 жыл бұрын
If tan(x/2) = t, wouldn't arctan(t) = x/2, instead of ctg(t) = x/2?
@EarlyMonAF5 жыл бұрын
In our notation, tan¯¹(x) is arctan(x) and not ctg as you would expect. He did a recent video about the confusion that the notation causes so you are definitely not alone. The (F)¯¹ = arcF notation is not logical but we're stuck with it. Btw, ctg is cot for us.
@erwinrojasarabia7 жыл бұрын
So beautiful video
@bizarrapmusic Жыл бұрын
i don't seem to understand how you formed the right triangle? like why did you make t the oposite side ?
@Private_Username007 Жыл бұрын
Because tan x = opposite side/adjacent side. So t is the opposite side and 1 is the adjacent side
@Virendersinghawanagood6 жыл бұрын
thanks from vs gujjar India
@deepakm93428 жыл бұрын
Clearly explained thank u !!!!
@vlix1237 жыл бұрын
for cosx couldn’t you use difference of squares to end up with cosx=1-t
@Rehan-ld1zw6 жыл бұрын
no you can't. (1+t)(1-t)(1+t^2); (1+t^2) is not equal to (1+t)^2
@calimaulud57084 жыл бұрын
My teacher told that there are actually 100+ formula for integral and I want to know and study them.
@herberthubert68285 жыл бұрын
amazing!! thank you!
@user-yg97f5hfvh4 жыл бұрын
how about x/2 is over ㅠ/2 ?
@domc37434 жыл бұрын
this is the best thank you
@genologic2102 жыл бұрын
it is every clear you are the best
@user-mv4ix7jd8o Жыл бұрын
What just happened on 3:31? I don't see the connection between sin(2*x/2) and 2sin(x/2)cos(x/2)
@jomariraphaellmangahas19919 ай бұрын
Double Angle Identity
@yannickescalera32314 жыл бұрын
Super nice!
@user-bz7ct3iu3v3 жыл бұрын
But why tan(x/2)?
@fyrerayne88822 жыл бұрын
Brilliant
@suhaybseeman46994 жыл бұрын
thanks teacher
@miyamotomusashi45562 жыл бұрын
If one watches this video carefully, they will see a very elegant method to find sin ( arctan(x) ) !
@jamesnitsuga49853 жыл бұрын
Are u singaporean?
@9909faisal6 жыл бұрын
wow thank you man,just WOW
@andreapaps4 жыл бұрын
I donno whats cooler the maths or the moustache :D
@davidlue30824 жыл бұрын
why not use 1-sin~2=cos~2 so cos= t`2-1/ 1+t~2 is not same to yours
@matokurin2 жыл бұрын
great great great
@holyshit9226 жыл бұрын
In fact we can draw other triangle to illustrate this substitution I created puzzle which shows substitutions which rationalize integrands in the form R(x,sqrt(ax^2+bx+c)) because it is two in one substitution (inverse trig substitution and shifted Weierstrass substitution)