To install ggbiplot, the code is now (17, Jan, 2020): library(devtools) install_github("vqv/ggbiplot") source: github.com/vqv/ggbiplot Excellent video and well explained these concepts. Thanks.
@bkrai4 жыл бұрын
Thanks for the update!
@abdullahmohammed85214 жыл бұрын
Many thanks for you Dr. God bless you.
@bkrai4 жыл бұрын
You are most welcome!
@ramram2utube Жыл бұрын
I revisited your video for interpretation of biplots in PCA. Many thanks.
@bkrai Жыл бұрын
You are welcome!
@philipabraham56007 жыл бұрын
This is the best PCA explanation I have seen anywhere so far. Thank you for sharing your knowledge.
@bkrai7 жыл бұрын
Thanks for the feedback!
@ashishsangwan59256 жыл бұрын
Awesome Explanation
@bkrai6 жыл бұрын
make sure you run following before installing: library(devtools)
@Drgautham2 ай бұрын
Thank you so much Professor🙏
@bkrai2 ай бұрын
You are very welcome!
@ramram2utube2 жыл бұрын
Thanks a lot Sir for your nice presentation. You saved my time. Earlier I used your R codes on Kohonen NN and now for PCA for my training lectures. Your explanation is so lucid. I appreciate your noble service of sharing knowledge
@bkrai2 жыл бұрын
You are most welcome!
@babadrammeh6562 жыл бұрын
R PCA IS VERY GOOD PACKAGE AND VERY HELPFULL
@bkrai2 жыл бұрын
Yes, I agree!
@modelmichael19727 жыл бұрын
Awesome video. Every R enthusiast needs to keep an eye on your channel. Thank you and keep up with great work!
@bkrai7 жыл бұрын
+Model Michael thanks👍
@padhanewalaullu7 жыл бұрын
Sir, Can we get code file ?
@jacklu16112 жыл бұрын
The Bio-plot was explained very clearly, thank you Dr. Rai!
@bkrai2 жыл бұрын
You are welcome!
@Dejia_Space4 жыл бұрын
Thank you!!Best explanation on Biplot on KZbin .
@bkrai4 жыл бұрын
Glad it was helpful!
@jinnythomas98154 жыл бұрын
Great Explanation....
@bkrai4 жыл бұрын
Thanks!
@nyatonkitnya42673 жыл бұрын
one really good video i have found. After watching few of your video now your videos are becoming a "turn to" when require. thanks
@bkrai3 жыл бұрын
Glad to hear that!
@jonm72724 жыл бұрын
Thank you for this extremely helpful, and easily understood tutorial, particularly the clear interpretation of the Bi-Plot. Much appreciated
@bkrai4 жыл бұрын
You're very welcome!
@NIKHILESHMNAIK5 жыл бұрын
You are too good sir. An absolute treat for ML enthusiasts.
@bkrai5 жыл бұрын
Thanks for your comments!
@saurabhkhodake7 жыл бұрын
This video is worth its weight in gold
@srujananeelam65475 жыл бұрын
Fantastic session.Perfectly understood Biplot
@bkrai5 жыл бұрын
Thanks for comments!
@theeoddname7 жыл бұрын
Great Video! Excellent walk though on PCA and how it can be useful for actual classifications. Thanks for the upload.
@bkrai7 жыл бұрын
+theeoddname thanks for the feedback!
@bucklasek12 жыл бұрын
Thanks for the video! It helped me a lot doing the forecasting for future values using PCA.
@bkrai2 жыл бұрын
Very welcome!
@koparka1122 жыл бұрын
Thank you for the material. It is very clear and actually very relevant to my current work. As I understand, the conversion of the data comprises addition products of notmalized predictors and loadings. Maybe you would have time to post a PLS regression video, please? The intriguing part is the explanation of the model itself
@deepikachandrasekaran35543 жыл бұрын
Very useful video sir. Could you explain me what is the need to partition the data into training and testing data?
@bkrai3 жыл бұрын
You may review this: kzbin.info/www/bejne/l4SUgGt7nqx_msk
@deepikachandrasekaran35543 жыл бұрын
@@bkrai thank you sir.
@galk325 жыл бұрын
One of the best PCA videos i ever seen, Thank you Mr. Rai.
@bkrai5 жыл бұрын
Thanks for comments!
@flamboyantperson59367 жыл бұрын
This is great. I was looking for PCA and you have done it. Many many thanks to you sir.
@nyadav378 Жыл бұрын
Very informative and nice presentation sir, sir can we estimate PCA for factor (for eg species) with unequal no. of observation. And we want to see the correlations in terms of each species viz for setosa or other two, how to do it? Please explain...Thank You
@jonimatix7 жыл бұрын
I really like your explanations in your videos. Keep them coming! Thanks
@bkrai7 жыл бұрын
Thanks for the feedback!
@abhishek8943 жыл бұрын
Thank you for this nice video Dr. Rai. I have a doubt. Why the predict function was used multiple times. After the prcomp function, all the data of Principle components were available in: pc$x. Why do we have to do: trg
@bkrai3 жыл бұрын
In R you can get same thing in multiple ways. This is just for illustration.
@abhishek8943 жыл бұрын
@@bkrai Thank you Sir. That makes it clear.
@bkrai3 жыл бұрын
@@abhishek894 You are welcome!
@eldrigeampong85734 жыл бұрын
Thank you so much Dr. Rai. Detailed teaching
@bkrai4 жыл бұрын
Thanks for comments!
@affyy043 жыл бұрын
Thank you for this amazing video. Better than my university lectures
@bkrai3 жыл бұрын
Thanks for comments!
@Rutvi_patel_11117 жыл бұрын
Fabulous work in PCA ! Keep it up
@bkrai7 жыл бұрын
Thanks for the feedback!
@ConeliusC337 жыл бұрын
Your videos have been constant companions during the last months of my master thesis. It seemed as if every time I had to switch to another analysis technique you were allready waiting here. So thank you a lot for your guidance and clear explanations! The only thing I would appreciate would be if you could provide the basic R scripts. Even though the copying process might help with understanding each command due to step by step application, to type text of a tiny youtube screen shown in one half of my monitor to r studio in the other half is troublesome. Thanks!
@bkrai7 жыл бұрын
Thanks for the feedback!
@inesceciliacardonadevoz50724 жыл бұрын
Thanks for this video sir, very good class but I can´t get it. because Error ... could not find function "ggbiplot". Excuse me, which is your R version ?
19:12 It is only for purpose to show another way to get the principal component related to training because : identical(pc$x, predict(pc,training)) gives TRUE meaning that pc$x is same as predict(pc,training).
@bkrai3 жыл бұрын
That's correct!
@earlymorningcodes61004 жыл бұрын
Orthogonality of principal component- 10:17
@bkrai4 жыл бұрын
Thx
@prithvivasireddy55645 жыл бұрын
Awesome video sir...kudos... :) 1 doubt though .... 20:48 - why are we using 2 components only? How do we know how many principal components to use?(species ~ PC1 + PC2)
@bkrai5 жыл бұрын
2 PCs capture more than 95% of the variability in the data. Other 2 only add about 5%. So you can choose to have PCs that capture over 80% or 90% of the variability.
@johnstevenson64582 жыл бұрын
Great video. Do you have a suggested package for running binary logistic regression? From a brief scan of nnet it appears to only have arguments for multinomial response variables. Thank you.
@bkrai2 жыл бұрын
You can refer to this: kzbin.info/www/bejne/d4fbaIqZZqiEbbs
@johnstevenson64582 жыл бұрын
@@bkrai sorry I was unclear in my message. I was hoping for a suggested package to run a binary logistic regression using PCA components as predictors - similar to what you have done here with multinomial. Any suggestions are welcome.
@bkrai2 жыл бұрын
Yes, you can use the PCA components as predictors and run binary logistic regression as shown in the link that I sent earlier.
@dioagusnofrizal97734 жыл бұрын
Thanks sir, why in this video use linear regression? Can i use k means to clustering from pc1 and pc2?
@bkrai4 жыл бұрын
Which line are you referring to?
@dioagusnofrizal97734 жыл бұрын
Sorry, i mean logistic regression in line 59
@donne4real4 жыл бұрын
Wonderful job explaining the material.
@bkrai4 жыл бұрын
Thanks for your comments and finding it useful!
@maf44213 жыл бұрын
Thank you Dr. Bharatendra Rai for explaining PCA in detail. Can you please explain how to find weights of a variable by PCA for making a composite index? Is it rotation values that are for PC1, PC2, etc.? For example, if I have (I=w1*X+w2*Y+w3*Z) then how to find w1, w2, w3 by PCA.
@bkrai3 жыл бұрын
For calculations you can refer to any textbook.
@upskillwithchetan4 жыл бұрын
Really really great explanation sir, Thank you so much for making it very simple
@bkrai4 жыл бұрын
Thanks for comments!
@anigov6 жыл бұрын
Dear Sir..thanks for a wonderful video. I have some questions. 1) At 20:18, why did u choose to reorder by setosa? 2)Why did you choose to use data as trg and not training to build mymodel given that trg has predictions from training 3) Can PCA be used to choose k in kmeans. If so, how to go about it? Thanks again. Regards
@siddharthadas867 жыл бұрын
Seriously awesome explanations! Thank you again.
@bkrai5 жыл бұрын
Thanks!
@earlymorningcodes61004 жыл бұрын
scatter Plat and Correlation- 2:04
@bkrai4 жыл бұрын
Thx
@ainli41254662 жыл бұрын
Thank you for sharing, I get an error "Error in plot_label(p = p, data = plot.data, label = label, label.label = label.label, : Unsupported class: prcomp"", when I try to run the ggbiplot. Would you please advise how to fix it?
@asiangg7 жыл бұрын
Thank you. Learned a lot from your channel
@bkrai7 жыл бұрын
Thanks!
@katherinechau55943 жыл бұрын
your videos are great :)
@bkrai3 жыл бұрын
Thank you!
@mukhtaradamuabubakar3703 жыл бұрын
Nice video and very helpful, I have challenges while installing the ggbiplot and mnet packages (am using R version 3.6.3) please any advice on how to over come such challenge?
@mukhtaradamuabubakar3703 жыл бұрын
OK for the nnet package it was successfully installed. but still struggling with the ggbiplot (despite using your codes). thanks
@LlamaFina6 жыл бұрын
Great video! Thanks for sharing your knowledge.
@bkrai6 жыл бұрын
Thanks for comments!
@souvikmukherjee79772 жыл бұрын
sir, please make a session on factor analysis with prediction
@bkrai2 жыл бұрын
Thanks for the suggestion!
@soumyanayak4455 жыл бұрын
Sir why have you predicted the training and test data with respect to PC? can use trg data for making neural model and test using tst data set? and find correlation b/w act and predicted values?
@bkrai5 жыл бұрын
When there are many variables, chances of having multicollinearity problem increases. And PCA helps to solve that problem. And yes, you can use neural network model.
@soumyanayak4455 жыл бұрын
@@bkrai sir can you please explain me the significance of the lines under the heading: prediction with principle components.As I am unable to understand why we are predicting twice on test data set. Please explain sir
@bkrai4 жыл бұрын
To avoid over-fitting where you get very good result from training data but not so from testing.
@golumworks2 жыл бұрын
If I just use addEllipses =TRUE, what determines the size of those ellipses? Also, if I specify ellipse.type = “confidence”, what confidence level is used to generate the ellipses? I used factoextra if that helps.
@mukeshchoudhary28423 жыл бұрын
Great video.. What if we want to include factor-like "Control and Heat" for genotypes? Please suggest
@bkrai3 жыл бұрын
It should work fine.
@azzeddinereghais74943 жыл бұрын
Good evening If you want to show the first dimension (Dim1) and the third dimension (Dim3) What to do or if you can provide the code for that Thanks
@safeeqahmed33066 жыл бұрын
Great video. I have one doubt. What does the stddev attribute of PC contain? Standard deviations of the variables are already in scale..so what does stddev represent? Thanks a lot
@bkrai6 жыл бұрын
At what point in time do you see this?
@safeeqahmed33066 жыл бұрын
Bharatendra Rai sorry it’s sdev attribute of pc and in 9:48 while showing the summary of pc, I would like to know what the standard deviation row denote..thanks a lot
@bkrai6 жыл бұрын
It is standard deviation related to principal components. It helps to estimate what percentage of variability is captured by each principal component.
@safeeqahmed33066 жыл бұрын
Bharatendra Rai thanks a lot. I understand this now
@numitayogesh92807 жыл бұрын
great lecture..please share your thoughts on machine learning introduction too
@bkrai7 жыл бұрын
For machine learning such random forest, neural networks, support vector machines, and extreme gradient boosting, you can refer to following: kzbin.info/aero/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1
@k5555-b4f7 жыл бұрын
Hello great video as always! However one question i had (even though you warned against hard interpretability of results) relates to how to interpret the coefficients. If we look at the coefficient table and read the first line (after the intercept), does that mean that with every increase of Sepal.Length there is a log odd increase of 14.05 in the probability of categorizing the specie as Versicolor, relative to a Setosa? Thanks!
@bkrai7 жыл бұрын
Your interpretation is correct.
@k5555-b4f7 жыл бұрын
Thank you! Keep up the good work! Your r videos are great!
@VenkateshDataScientist7 жыл бұрын
Sir ..ggbiplot is not installed hence cant work on this ..though i followed the video throughly
@harishnagpal216 жыл бұрын
Hi Bharatendra, nice video. I have got couple queries. If there are large no of numeric variables and through PCA we find that they are highly correlated then before going for model building 1) Do we need to remove highly correlated variables ! 2) which one to remove ! Thanks
@bkrai6 жыл бұрын
You don't need to remove if you are using the components for developing a prediction model. This video provides a similar example.
@harishnagpal216 жыл бұрын
thanks
@desert002006 жыл бұрын
Principal components are orthogonal to each other, saying differently they are uncorrelated and can be used as is in model building.
@bkrai4 жыл бұрын
Thanks!
@ramp20117 жыл бұрын
Awesome video. Thank you. As time permits can you do a video on use of caret package? thank you
@bkrai5 жыл бұрын
Saw this today. Thanks for comments!
@nahalhoghooghi85756 жыл бұрын
Great job, same as always. Can I use PCA for 2 or more categorical variables? Can I define those variables as 0 and 1 in PCA?
@bkrai6 жыл бұрын
You can only use numeric variables. You can try using 0 and 1 and see if it works ok.
@siddharthabingi7 жыл бұрын
Great lecture. Thanks.
@bkrai5 жыл бұрын
Thanks!
@SaranathenArun11E2146 жыл бұрын
brilliant sir..simple and sweet..thanks...nice music....if i have 10 DISCRETE VARIABLEShow to reduce to 2 or 3 components, please explain?
@bkrai6 жыл бұрын
Thanks for comments! Note that this method is only for numeric variables.
@adityapatnaik70786 жыл бұрын
too good!! plz make more such videos...plz!
@bkrai6 жыл бұрын
Thanks for comments! You may find this useful too: kzbin.info/aero/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1
@GeFaaaA5 жыл бұрын
Hello very nice video!!! i have a question. Do you how i choose how many PC i have to use and which ones ???
@bkrai5 жыл бұрын
When you have many PCs, you can select first few that capture almost all variability contained in data.
@GeFaaaA5 жыл бұрын
@@bkrai thank you for your response! So I have to test every possible model , right? Do you know if I can use something like a criterion ?
@bkrai4 жыл бұрын
It is good to capture over 80% of the variability.
@PrimoSchnevi4 жыл бұрын
Hello. I dont know anything about Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation and i will never need to since thats not in my line of work. I Appreciate your Intromusic though. You are a true champ Bharatendra and enrich this world with your presence. Also that intro music fucking slaps.
@bkrai4 жыл бұрын
Thanks for comments!
@indranipal81314 жыл бұрын
Do you have a video on PCA for unsupervised learning via clustering and similarity ranking?
@bkrai4 жыл бұрын
not yet.
@sainandankandikattu90776 жыл бұрын
Awesome video! Could you plz add Partial least squares regression and principal components regression to your playlist! That would be of great help. Thanks in advance!
@bkrai4 жыл бұрын
Thanks for suggestions!
@saifsplaka7 жыл бұрын
Hi Sir,Could you take one session on SVD in R and also some theoretical explanation on it. I m finding it very difficult to understand it with most of the material available on the net.
@sonalichakrabarty16183 жыл бұрын
Can you please show back propagation algorithm in r
@bkrai3 жыл бұрын
Refer to this: kzbin.info/www/bejne/Y4fWaomXmpd-f5I
@alessandrorosati969 Жыл бұрын
can a dataset consisting of the principal components and the target variable be used to perform machine learning techniques?
@bkrai Жыл бұрын
Yes, this video shows an example of doing it.
@abiani0074 жыл бұрын
Can you upload a video describing independent component analysis in R
@bkrai4 жыл бұрын
I've added it to my list.
@sebvangeli7 жыл бұрын
Great work! Thank you
@md.tabibulislam97407 жыл бұрын
Firstly thank you for your helpful video. I have problem to add ellipse in the plot. I have 30 variables, first 29 is the numeric and last one is the factor variables. But i can,t plot the ellipse in the PCA plot. How can i solve this? Please help.
@andreafiore83734 жыл бұрын
Thank you, this video will be really helpful to complete my thesis :)
@bkrai4 жыл бұрын
Good luck!
@murilocintra1807 жыл бұрын
Excellent demonstration of PCA, really helpful. I just don't understand why in pc object, you use only training data instead of the entire data.
@bkrai6 жыл бұрын
We only use training data so that we can later use test data to assess prediction model.
@garykuleck13202 жыл бұрын
Dr. Rai, Thanks for this informative video. I am having a problem getting the predict function to work with the model created on the training dataset. I am getting two errors(paraphrased): 1. NAs not allowed in subscripted assignments; 2. newdata has 1900 rows but variables found have 8100 rows. I think it is looking for the same number of rows in the test dataset. Is there something I am doing wrong? Appreciate any feedback.
@bkrai2 жыл бұрын
NAs occur when there is missing data. For handling missing values, refer to: kzbin.info/www/bejne/d5-an4OCf5WZqck
@jinnythomas98154 жыл бұрын
Thanks for the video Please publish video on Exploratory Factor Analysis,Confirmatory Factor Analysis application in a model Also please explain the difference from PCA
@bkrai4 жыл бұрын
Thanks for the suggestion, I've added this to my list.
@manpreetkaur77162 жыл бұрын
Add a video on non negative matrix factorization like intNMF
@bkrai2 жыл бұрын
Thanks, I've added it to my list of future videos.
@safezonesharing9146 жыл бұрын
Thank you for your VDO. My R version is 3.5.1 and it cannot allow ggbiplot. Do you have any package instead of ggbiplot ?
@bkrai6 жыл бұрын
Try installing it by running this line: install_github("ggbiplot", "vqv")
@safezonesharing9146 жыл бұрын
@@bkrai Thank you for your kindly replying When I ran it, it would shown like this. Error in install_github("ggbiplot", "vqv") : could not find function "install_github"
@ashishsangwan59256 жыл бұрын
@@safezonesharing914 I'm also getting the same error
@ashishsangwan59256 жыл бұрын
@@safezonesharing914 try below command. It worked for me library(devtools) install_github("vqv/ggbiplot")
@alexandrec.29395 жыл бұрын
@@ashishsangwan5925 Arf, for few seconds I believed you were my saver ^^. But nope, your alternative didn't work as well
@samdavepollard7 жыл бұрын
Thank You - this was extremely useful. Very nice channel you have here - easy sub.
@bkrai5 жыл бұрын
Thanks for comments!
@joujoumilor28985 жыл бұрын
As usual your videos are the best explained , Sir please I have a question actually my data contains both numeric and categorical variables, so what is the best method to reduce demension and what is the name of the pckage because I'm new in R .
@dhavalpatel18434 жыл бұрын
You can binaries your categorical variables. Try to google and learn about One-of-k coding. That way you end up with only numerical data.
@aks1008 Жыл бұрын
Sir can I use boruta function instead of pca in r..
@bkrai Жыл бұрын
Yes certainly. Here is the link: kzbin.info/www/bejne/jHalkqtojLKVe6M
@aks1008 Жыл бұрын
@@bkrai sir what do you like between r and python..i find r code more easy to understand and write..
@bkrai Жыл бұрын
In universities, business students usually use R and computer science students mostly use Python. If you are mainly looking to apply various machine learning and statistical methodologies, R is perfect.
@MinhasA6 жыл бұрын
thank you for the amazing video!
@bkrai6 жыл бұрын
Thanks for comments!
@dejunli64172 жыл бұрын
Hi, I want to know from where can I get the iris example data ? thank you!
@bkrai2 жыл бұрын
It's inbuilt in R itself. You can access it by running first 3 lines shown in the video.
@Dhrittinagpal5 жыл бұрын
Hello sir, I have been a regular follower of ur videos on R. Must appreciate the content and the ease with which you explain the concept.I have a small query. In PCA I am not able to create a biplot as I am not able to run the command - install_github("ggbiplot", "vqv"). I am getting the following message - Error in parse_repo_spec(repo) : Invalid git repo specification: 'ggbiplot'.Your help will be highly appreciated. Thanks.
Hi..good day bharatendra..I want to replace one my columns with value 1 for all its elements,what is the code in R studio..thanks for your time?
@bkrai7 жыл бұрын
suppose you are using following data: data(iris) To add what you indicated to a "new" column, you can use: iris$new
@rainbowdu5097 жыл бұрын
thanx for ur ans ..I do already have a column with different values,I wanna replace all values on that column with just 1
@bkrai7 жыл бұрын
So for iris data if you want to change all values for Sepal.Length variable to 1, you can use: iris$Sepal.Length
@mamadououattara2102 жыл бұрын
Hi Dr, How to I use PCA to generate a score based on several variables? Regards
@Jubo2566 жыл бұрын
Hello, you put training [5] to reference the column on trg variable.... shouldn't it be training[ , 5]?
@bkrai4 жыл бұрын
It is training[ , 5] in the video.
@jayashriraghunath32104 жыл бұрын
Awesome explanation sir...👍👍can you make a video for independent component analysis using r in the same way sir?
@bkrai4 жыл бұрын
Thanks, I've have added it to my list.
@ramp20117 жыл бұрын
Another great video. Thank you.. If your data has number of categorical columns, PCA will miss out the dependence of the target variable on these columns. Correct? In such cases what other technique can one use? Thx
@bkrai7 жыл бұрын
PCA doesn't include target variable. At the time of developing a predictive model where we use a few principal components, we can include categorical variables. So, we don't miss out on the usefulness of any categorical variable that was excluded from PCA.
@vishnukowndinya7 жыл бұрын
hi sir, dose it mean that, if i have x1 x2 c3 x4 (c3 is a categorical) . At 1st i have to use all the numeric (x1 2 4) variables to build pca, then adding the cat var c3 my data changes as (pc1,pc2, c3) ??? or in the begining itself i have to convert the categorical c3 into (1, 0) and then include all my input vars to form a pcs????
@BbakMs6 жыл бұрын
Sir, I am doing PCA analysis on DJ 30 Stocks and when I view pca$loadings for 30 variables, I noticed that some were not displayed. For example, Component 1 has -0.218 for Apple but then shows none for JPM, what does this mean?
@scholars.home9994 жыл бұрын
Sir, can you please suggest how I can perform PCA on my Panel Data? -Regards
@ketanverma78393 жыл бұрын
is there any other alternative package for ggbiplot ?
@bkrai2 жыл бұрын
Try this for biplot ( I just now ran this in RStudio cloud, and it worked fine): library(devtools) install_github("fawda123/ggord") library(ggord)
@raisulalam60514 жыл бұрын
Thank you
@bkrai4 жыл бұрын
Welcome!
@sidraghayas85835 жыл бұрын
Can you please help with combined pca and ann model?
@bkrai5 жыл бұрын
I'm adding to the list of future videos.
@Miichaelk4 жыл бұрын
Thanks for this video sir, Unfortunately, I have a problem with downloading the ggbiplot package, I tried the code you used in the video and I also googled, but I can not get it to work... Do you have any suggestions on how to download the package?? Thanks in advance
thank you so much for the video, this helped me a litle bit, because i still dont know how to use R to produce scatter plot for EOF QBO (Quasi Biennial Oscillation). Excuse me Sir, May you help me with the script?
@bkrai5 жыл бұрын
For data visualization you can find this link useful: kzbin.info/aero/PL34t5iLfZddskPZVTm03hed8K93RsyP24
@Pankajjadwal7 жыл бұрын
It was a fruitful video.Can you please share the code.
@rashmisajwan17246 жыл бұрын
I'm using stata, are there any specific commands for principal component analysis PCA in PANEL DATA Or Just simply run PCA after standardizing variables?
@bkrai6 жыл бұрын
I've not used stata, so difficult to say what command will be correct.
@seaatm6 жыл бұрын
Cool video! Can you do a video about Multiple Correspondance Analysis(MCA) for cualitative data? It would help me a lot
@bkrai6 жыл бұрын
Thanks, I've added this to my list.
@mohammadj.shamim93427 жыл бұрын
Dear Respected Sir, I wanted to install ggbiplot using the command you provided with us. but it gives me another message. The message is (Installation failed: SSL certificate problem: self signed certificate in certificate chain Warning message: Username parameter is deprecated. Please use vqv/ggbiplot) I used vqv/ggbiplot as well, but no good results. please guide me what shall I do?
@bkrai7 жыл бұрын
Not sure what went wrong. May be some typo or something else. Probably you can try running commands using my R file.