Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation

  Рет қаралды 90,398

Dr. Bharatendra Rai

Dr. Bharatendra Rai

Күн бұрын

Пікірлер: 356
@shawnmckenzie8699
@shawnmckenzie8699 4 жыл бұрын
To install ggbiplot, the code is now (17, Jan, 2020): library(devtools) install_github("vqv/ggbiplot") source: github.com/vqv/ggbiplot Excellent video and well explained these concepts. Thanks.
@bkrai
@bkrai 4 жыл бұрын
Thanks for the update!
@abdullahmohammed8521
@abdullahmohammed8521 4 жыл бұрын
Many thanks for you Dr. God bless you.
@bkrai
@bkrai 4 жыл бұрын
You are most welcome!
@ramram2utube
@ramram2utube Жыл бұрын
I revisited your video for interpretation of biplots in PCA. Many thanks.
@bkrai
@bkrai Жыл бұрын
You are welcome!
@philipabraham5600
@philipabraham5600 7 жыл бұрын
This is the best PCA explanation I have seen anywhere so far. Thank you for sharing your knowledge.
@bkrai
@bkrai 7 жыл бұрын
Thanks for the feedback!
@ashishsangwan5925
@ashishsangwan5925 6 жыл бұрын
Awesome Explanation
@bkrai
@bkrai 6 жыл бұрын
make sure you run following before installing: library(devtools)
@Drgautham
@Drgautham 2 ай бұрын
Thank you so much Professor🙏
@bkrai
@bkrai 2 ай бұрын
You are very welcome!
@ramram2utube
@ramram2utube 2 жыл бұрын
Thanks a lot Sir for your nice presentation. You saved my time. Earlier I used your R codes on Kohonen NN and now for PCA for my training lectures. Your explanation is so lucid. I appreciate your noble service of sharing knowledge
@bkrai
@bkrai 2 жыл бұрын
You are most welcome!
@babadrammeh656
@babadrammeh656 2 жыл бұрын
R PCA IS VERY GOOD PACKAGE AND VERY HELPFULL
@bkrai
@bkrai 2 жыл бұрын
Yes, I agree!
@modelmichael1972
@modelmichael1972 7 жыл бұрын
Awesome video. Every R enthusiast needs to keep an eye on your channel. Thank you and keep up with great work!
@bkrai
@bkrai 7 жыл бұрын
+Model Michael thanks👍
@padhanewalaullu
@padhanewalaullu 7 жыл бұрын
Sir, Can we get code file ?
@jacklu1611
@jacklu1611 2 жыл бұрын
The Bio-plot was explained very clearly, thank you Dr. Rai!
@bkrai
@bkrai 2 жыл бұрын
You are welcome!
@Dejia_Space
@Dejia_Space 4 жыл бұрын
Thank you!!Best explanation on Biplot on KZbin .
@bkrai
@bkrai 4 жыл бұрын
Glad it was helpful!
@jinnythomas9815
@jinnythomas9815 4 жыл бұрын
Great Explanation....
@bkrai
@bkrai 4 жыл бұрын
Thanks!
@nyatonkitnya4267
@nyatonkitnya4267 3 жыл бұрын
one really good video i have found. After watching few of your video now your videos are becoming a "turn to" when require. thanks
@bkrai
@bkrai 3 жыл бұрын
Glad to hear that!
@jonm7272
@jonm7272 4 жыл бұрын
Thank you for this extremely helpful, and easily understood tutorial, particularly the clear interpretation of the Bi-Plot. Much appreciated
@bkrai
@bkrai 4 жыл бұрын
You're very welcome!
@NIKHILESHMNAIK
@NIKHILESHMNAIK 5 жыл бұрын
You are too good sir. An absolute treat for ML enthusiasts.
@bkrai
@bkrai 5 жыл бұрын
Thanks for your comments!
@saurabhkhodake
@saurabhkhodake 7 жыл бұрын
This video is worth its weight in gold
@srujananeelam6547
@srujananeelam6547 5 жыл бұрын
Fantastic session.Perfectly understood Biplot
@bkrai
@bkrai 5 жыл бұрын
Thanks for comments!
@theeoddname
@theeoddname 7 жыл бұрын
Great Video! Excellent walk though on PCA and how it can be useful for actual classifications. Thanks for the upload.
@bkrai
@bkrai 7 жыл бұрын
+theeoddname thanks for the feedback!
@bucklasek1
@bucklasek1 2 жыл бұрын
Thanks for the video! It helped me a lot doing the forecasting for future values using PCA.
@bkrai
@bkrai 2 жыл бұрын
Very welcome!
@koparka112
@koparka112 2 жыл бұрын
Thank you for the material. It is very clear and actually very relevant to my current work. As I understand, the conversion of the data comprises addition products of notmalized predictors and loadings. Maybe you would have time to post a PLS regression video, please? The intriguing part is the explanation of the model itself
@deepikachandrasekaran3554
@deepikachandrasekaran3554 3 жыл бұрын
Very useful video sir. Could you explain me what is the need to partition the data into training and testing data?
@bkrai
@bkrai 3 жыл бұрын
You may review this: kzbin.info/www/bejne/l4SUgGt7nqx_msk
@deepikachandrasekaran3554
@deepikachandrasekaran3554 3 жыл бұрын
@@bkrai thank you sir.
@galk32
@galk32 5 жыл бұрын
One of the best PCA videos i ever seen, Thank you Mr. Rai.
@bkrai
@bkrai 5 жыл бұрын
Thanks for comments!
@flamboyantperson5936
@flamboyantperson5936 7 жыл бұрын
This is great. I was looking for PCA and you have done it. Many many thanks to you sir.
@nyadav378
@nyadav378 Жыл бұрын
Very informative and nice presentation sir, sir can we estimate PCA for factor (for eg species) with unequal no. of observation. And we want to see the correlations in terms of each species viz for setosa or other two, how to do it? Please explain...Thank You
@jonimatix
@jonimatix 7 жыл бұрын
I really like your explanations in your videos. Keep them coming! Thanks
@bkrai
@bkrai 7 жыл бұрын
Thanks for the feedback!
@abhishek894
@abhishek894 3 жыл бұрын
Thank you for this nice video Dr. Rai. I have a doubt. Why the predict function was used multiple times. After the prcomp function, all the data of Principle components were available in: pc$x. Why do we have to do: trg
@bkrai
@bkrai 3 жыл бұрын
In R you can get same thing in multiple ways. This is just for illustration.
@abhishek894
@abhishek894 3 жыл бұрын
@@bkrai Thank you Sir. That makes it clear.
@bkrai
@bkrai 3 жыл бұрын
@@abhishek894 You are welcome!
@eldrigeampong8573
@eldrigeampong8573 4 жыл бұрын
Thank you so much Dr. Rai. Detailed teaching
@bkrai
@bkrai 4 жыл бұрын
Thanks for comments!
@affyy04
@affyy04 3 жыл бұрын
Thank you for this amazing video. Better than my university lectures
@bkrai
@bkrai 3 жыл бұрын
Thanks for comments!
@Rutvi_patel_1111
@Rutvi_patel_1111 7 жыл бұрын
Fabulous work in PCA ! Keep it up
@bkrai
@bkrai 7 жыл бұрын
Thanks for the feedback!
@ConeliusC33
@ConeliusC33 7 жыл бұрын
Your videos have been constant companions during the last months of my master thesis. It seemed as if every time I had to switch to another analysis technique you were allready waiting here. So thank you a lot for your guidance and clear explanations! The only thing I would appreciate would be if you could provide the basic R scripts. Even though the copying process might help with understanding each command due to step by step application, to type text of a tiny youtube screen shown in one half of my monitor to r studio in the other half is troublesome. Thanks!
@bkrai
@bkrai 7 жыл бұрын
Thanks for the feedback!
@inesceciliacardonadevoz5072
@inesceciliacardonadevoz5072 4 жыл бұрын
Thanks for this video sir, very good class but I can´t get it. because Error ... could not find function "ggbiplot". Excuse me, which is your R version ?
@bkrai
@bkrai 4 жыл бұрын
Try this: library(devtools) install_github("vqv/ggbiplot")
@WahranRai
@WahranRai 3 жыл бұрын
19:12 It is only for purpose to show another way to get the principal component related to training because : identical(pc$x, predict(pc,training)) gives TRUE meaning that pc$x is same as predict(pc,training).
@bkrai
@bkrai 3 жыл бұрын
That's correct!
@earlymorningcodes6100
@earlymorningcodes6100 4 жыл бұрын
Orthogonality of principal component- 10:17
@bkrai
@bkrai 4 жыл бұрын
Thx
@prithvivasireddy5564
@prithvivasireddy5564 5 жыл бұрын
Awesome video sir...kudos... :) 1 doubt though .... 20:48 - why are we using 2 components only? How do we know how many principal components to use?(species ~ PC1 + PC2)
@bkrai
@bkrai 5 жыл бұрын
2 PCs capture more than 95% of the variability in the data. Other 2 only add about 5%. So you can choose to have PCs that capture over 80% or 90% of the variability.
@johnstevenson6458
@johnstevenson6458 2 жыл бұрын
Great video. Do you have a suggested package for running binary logistic regression? From a brief scan of nnet it appears to only have arguments for multinomial response variables. Thank you.
@bkrai
@bkrai 2 жыл бұрын
You can refer to this: kzbin.info/www/bejne/d4fbaIqZZqiEbbs
@johnstevenson6458
@johnstevenson6458 2 жыл бұрын
@@bkrai sorry I was unclear in my message. I was hoping for a suggested package to run a binary logistic regression using PCA components as predictors - similar to what you have done here with multinomial. Any suggestions are welcome.
@bkrai
@bkrai 2 жыл бұрын
Yes, you can use the PCA components as predictors and run binary logistic regression as shown in the link that I sent earlier.
@dioagusnofrizal9773
@dioagusnofrizal9773 4 жыл бұрын
Thanks sir, why in this video use linear regression? Can i use k means to clustering from pc1 and pc2?
@bkrai
@bkrai 4 жыл бұрын
Which line are you referring to?
@dioagusnofrizal9773
@dioagusnofrizal9773 4 жыл бұрын
Sorry, i mean logistic regression in line 59
@donne4real
@donne4real 4 жыл бұрын
Wonderful job explaining the material.
@bkrai
@bkrai 4 жыл бұрын
Thanks for your comments and finding it useful!
@maf4421
@maf4421 3 жыл бұрын
Thank you Dr. Bharatendra Rai for explaining PCA in detail. Can you please explain how to find weights of a variable by PCA for making a composite index? Is it rotation values that are for PC1, PC2, etc.? For example, if I have (I=w1*X+w2*Y+w3*Z) then how to find w1, w2, w3 by PCA.
@bkrai
@bkrai 3 жыл бұрын
For calculations you can refer to any textbook.
@upskillwithchetan
@upskillwithchetan 4 жыл бұрын
Really really great explanation sir, Thank you so much for making it very simple
@bkrai
@bkrai 4 жыл бұрын
Thanks for comments!
@anigov
@anigov 6 жыл бұрын
Dear Sir..thanks for a wonderful video. I have some questions. 1) At 20:18, why did u choose to reorder by setosa? 2)Why did you choose to use data as trg and not training to build mymodel given that trg has predictions from training 3) Can PCA be used to choose k in kmeans. If so, how to go about it? Thanks again. Regards
@siddharthadas86
@siddharthadas86 7 жыл бұрын
Seriously awesome explanations! Thank you again.
@bkrai
@bkrai 5 жыл бұрын
Thanks!
@earlymorningcodes6100
@earlymorningcodes6100 4 жыл бұрын
scatter Plat and Correlation- 2:04
@bkrai
@bkrai 4 жыл бұрын
Thx
@ainli4125466
@ainli4125466 2 жыл бұрын
Thank you for sharing, I get an error "Error in plot_label(p = p, data = plot.data, label = label, label.label = label.label, : Unsupported class: prcomp"", when I try to run the ggbiplot. Would you please advise how to fix it?
@asiangg
@asiangg 7 жыл бұрын
Thank you. Learned a lot from your channel
@bkrai
@bkrai 7 жыл бұрын
Thanks!
@katherinechau5594
@katherinechau5594 3 жыл бұрын
your videos are great :)
@bkrai
@bkrai 3 жыл бұрын
Thank you!
@mukhtaradamuabubakar370
@mukhtaradamuabubakar370 3 жыл бұрын
Nice video and very helpful, I have challenges while installing the ggbiplot and mnet packages (am using R version 3.6.3) please any advice on how to over come such challenge?
@mukhtaradamuabubakar370
@mukhtaradamuabubakar370 3 жыл бұрын
OK for the nnet package it was successfully installed. but still struggling with the ggbiplot (despite using your codes). thanks
@LlamaFina
@LlamaFina 6 жыл бұрын
Great video! Thanks for sharing your knowledge.
@bkrai
@bkrai 6 жыл бұрын
Thanks for comments!
@souvikmukherjee7977
@souvikmukherjee7977 2 жыл бұрын
sir, please make a session on factor analysis with prediction
@bkrai
@bkrai 2 жыл бұрын
Thanks for the suggestion!
@soumyanayak445
@soumyanayak445 5 жыл бұрын
Sir why have you predicted the training and test data with respect to PC? can use trg data for making neural model and test using tst data set? and find correlation b/w act and predicted values?
@bkrai
@bkrai 5 жыл бұрын
When there are many variables, chances of having multicollinearity problem increases. And PCA helps to solve that problem. And yes, you can use neural network model.
@soumyanayak445
@soumyanayak445 5 жыл бұрын
@@bkrai sir can you please explain me the significance of the lines under the heading: prediction with principle components.As I am unable to understand why we are predicting twice on test data set. Please explain sir
@bkrai
@bkrai 4 жыл бұрын
To avoid over-fitting where you get very good result from training data but not so from testing.
@golumworks
@golumworks 2 жыл бұрын
If I just use addEllipses =TRUE, what determines the size of those ellipses? Also, if I specify ellipse.type = “confidence”, what confidence level is used to generate the ellipses? I used factoextra if that helps.
@mukeshchoudhary2842
@mukeshchoudhary2842 3 жыл бұрын
Great video.. What if we want to include factor-like "Control and Heat" for genotypes? Please suggest
@bkrai
@bkrai 3 жыл бұрын
It should work fine.
@azzeddinereghais7494
@azzeddinereghais7494 3 жыл бұрын
Good evening If you want to show the first dimension (Dim1) and the third dimension (Dim3) What to do or if you can provide the code for that Thanks
@safeeqahmed3306
@safeeqahmed3306 6 жыл бұрын
Great video. I have one doubt. What does the stddev attribute of PC contain? Standard deviations of the variables are already in scale..so what does stddev represent? Thanks a lot
@bkrai
@bkrai 6 жыл бұрын
At what point in time do you see this?
@safeeqahmed3306
@safeeqahmed3306 6 жыл бұрын
Bharatendra Rai sorry it’s sdev attribute of pc and in 9:48 while showing the summary of pc, I would like to know what the standard deviation row denote..thanks a lot
@bkrai
@bkrai 6 жыл бұрын
It is standard deviation related to principal components. It helps to estimate what percentage of variability is captured by each principal component.
@safeeqahmed3306
@safeeqahmed3306 6 жыл бұрын
Bharatendra Rai thanks a lot. I understand this now
@numitayogesh9280
@numitayogesh9280 7 жыл бұрын
great lecture..please share your thoughts on machine learning introduction too
@bkrai
@bkrai 7 жыл бұрын
For machine learning such random forest, neural networks, support vector machines, and extreme gradient boosting, you can refer to following: kzbin.info/aero/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1
@k5555-b4f
@k5555-b4f 7 жыл бұрын
Hello great video as always! However one question i had (even though you warned against hard interpretability of results) relates to how to interpret the coefficients. If we look at the coefficient table and read the first line (after the intercept), does that mean that with every increase of Sepal.Length there is a log odd increase of 14.05 in the probability of categorizing the specie as Versicolor, relative to a Setosa? Thanks!
@bkrai
@bkrai 7 жыл бұрын
Your interpretation is correct.
@k5555-b4f
@k5555-b4f 7 жыл бұрын
Thank you! Keep up the good work! Your r videos are great!
@VenkateshDataScientist
@VenkateshDataScientist 7 жыл бұрын
Sir ..ggbiplot is not installed hence cant work on this ..though i followed the video throughly
@harishnagpal21
@harishnagpal21 6 жыл бұрын
Hi Bharatendra, nice video. I have got couple queries. If there are large no of numeric variables and through PCA we find that they are highly correlated then before going for model building 1) Do we need to remove highly correlated variables ! 2) which one to remove ! Thanks
@bkrai
@bkrai 6 жыл бұрын
You don't need to remove if you are using the components for developing a prediction model. This video provides a similar example.
@harishnagpal21
@harishnagpal21 6 жыл бұрын
thanks
@desert00200
@desert00200 6 жыл бұрын
Principal components are orthogonal to each other, saying differently they are uncorrelated and can be used as is in model building.
@bkrai
@bkrai 4 жыл бұрын
Thanks!
@ramp2011
@ramp2011 7 жыл бұрын
Awesome video. Thank you. As time permits can you do a video on use of caret package? thank you
@bkrai
@bkrai 5 жыл бұрын
Saw this today. Thanks for comments!
@nahalhoghooghi8575
@nahalhoghooghi8575 6 жыл бұрын
Great job, same as always. Can I use PCA for 2 or more categorical variables? Can I define those variables as 0 and 1 in PCA?
@bkrai
@bkrai 6 жыл бұрын
You can only use numeric variables. You can try using 0 and 1 and see if it works ok.
@siddharthabingi
@siddharthabingi 7 жыл бұрын
Great lecture. Thanks.
@bkrai
@bkrai 5 жыл бұрын
Thanks!
@SaranathenArun11E214
@SaranathenArun11E214 6 жыл бұрын
brilliant sir..simple and sweet..thanks...nice music....if i have 10 DISCRETE VARIABLEShow to reduce to 2 or 3 components, please explain?
@bkrai
@bkrai 6 жыл бұрын
Thanks for comments! Note that this method is only for numeric variables.
@adityapatnaik7078
@adityapatnaik7078 6 жыл бұрын
too good!! plz make more such videos...plz!
@bkrai
@bkrai 6 жыл бұрын
Thanks for comments! You may find this useful too: kzbin.info/aero/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1
@GeFaaaA
@GeFaaaA 5 жыл бұрын
Hello very nice video!!! i have a question. Do you how i choose how many PC i have to use and which ones ???
@bkrai
@bkrai 5 жыл бұрын
When you have many PCs, you can select first few that capture almost all variability contained in data.
@GeFaaaA
@GeFaaaA 5 жыл бұрын
@@bkrai thank you for your response! So I have to test every possible model , right? Do you know if I can use something like a criterion ?
@bkrai
@bkrai 4 жыл бұрын
It is good to capture over 80% of the variability.
@PrimoSchnevi
@PrimoSchnevi 4 жыл бұрын
Hello. I dont know anything about Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation and i will never need to since thats not in my line of work. I Appreciate your Intromusic though. You are a true champ Bharatendra and enrich this world with your presence. Also that intro music fucking slaps.
@bkrai
@bkrai 4 жыл бұрын
Thanks for comments!
@indranipal8131
@indranipal8131 4 жыл бұрын
Do you have a video on PCA for unsupervised learning via clustering and similarity ranking?
@bkrai
@bkrai 4 жыл бұрын
not yet.
@sainandankandikattu9077
@sainandankandikattu9077 6 жыл бұрын
Awesome video! Could you plz add Partial least squares regression and principal components regression to your playlist! That would be of great help. Thanks in advance!
@bkrai
@bkrai 4 жыл бұрын
Thanks for suggestions!
@saifsplaka
@saifsplaka 7 жыл бұрын
Hi Sir,Could you take one session on SVD in R and also some theoretical explanation on it. I m finding it very difficult to understand it with most of the material available on the net.
@sonalichakrabarty1618
@sonalichakrabarty1618 3 жыл бұрын
Can you please show back propagation algorithm in r
@bkrai
@bkrai 3 жыл бұрын
Refer to this: kzbin.info/www/bejne/Y4fWaomXmpd-f5I
@alessandrorosati969
@alessandrorosati969 Жыл бұрын
can a dataset consisting of the principal components and the target variable be used to perform machine learning techniques?
@bkrai
@bkrai Жыл бұрын
Yes, this video shows an example of doing it.
@abiani007
@abiani007 4 жыл бұрын
Can you upload a video describing independent component analysis in R
@bkrai
@bkrai 4 жыл бұрын
I've added it to my list.
@sebvangeli
@sebvangeli 7 жыл бұрын
Great work! Thank you
@md.tabibulislam9740
@md.tabibulislam9740 7 жыл бұрын
Firstly thank you for your helpful video. I have problem to add ellipse in the plot. I have 30 variables, first 29 is the numeric and last one is the factor variables. But i can,t plot the ellipse in the PCA plot. How can i solve this? Please help.
@andreafiore8373
@andreafiore8373 4 жыл бұрын
Thank you, this video will be really helpful to complete my thesis :)
@bkrai
@bkrai 4 жыл бұрын
Good luck!
@murilocintra180
@murilocintra180 7 жыл бұрын
Excellent demonstration of PCA, really helpful​. I just don't understand why in pc object, you use only training data instead of the entire data.
@bkrai
@bkrai 6 жыл бұрын
We only use training data so that we can later use test data to assess prediction model.
@garykuleck1320
@garykuleck1320 2 жыл бұрын
Dr. Rai, Thanks for this informative video. I am having a problem getting the predict function to work with the model created on the training dataset. I am getting two errors(paraphrased): 1. NAs not allowed in subscripted assignments; 2. newdata has 1900 rows but variables found have 8100 rows. I think it is looking for the same number of rows in the test dataset. Is there something I am doing wrong? Appreciate any feedback.
@bkrai
@bkrai 2 жыл бұрын
NAs occur when there is missing data. For handling missing values, refer to: kzbin.info/www/bejne/d5-an4OCf5WZqck
@jinnythomas9815
@jinnythomas9815 4 жыл бұрын
Thanks for the video Please publish video on Exploratory Factor Analysis,Confirmatory Factor Analysis application in a model Also please explain the difference from PCA
@bkrai
@bkrai 4 жыл бұрын
Thanks for the suggestion, I've added this to my list.
@manpreetkaur7716
@manpreetkaur7716 2 жыл бұрын
Add a video on non negative matrix factorization like intNMF
@bkrai
@bkrai 2 жыл бұрын
Thanks, I've added it to my list of future videos.
@safezonesharing914
@safezonesharing914 6 жыл бұрын
Thank you for your VDO. My R version is 3.5.1 and it cannot allow ggbiplot. Do you have any package instead of ggbiplot ?
@bkrai
@bkrai 6 жыл бұрын
Try installing it by running this line: install_github("ggbiplot", "vqv")
@safezonesharing914
@safezonesharing914 6 жыл бұрын
@@bkrai Thank you for your kindly replying When I ran it, it would shown like this. Error in install_github("ggbiplot", "vqv") : could not find function "install_github"
@ashishsangwan5925
@ashishsangwan5925 6 жыл бұрын
@@safezonesharing914 I'm also getting the same error
@ashishsangwan5925
@ashishsangwan5925 6 жыл бұрын
@@safezonesharing914 try below command. It worked for me library(devtools) install_github("vqv/ggbiplot")
@alexandrec.2939
@alexandrec.2939 5 жыл бұрын
@@ashishsangwan5925 Arf, for few seconds I believed you were my saver ^^. But nope, your alternative didn't work as well
@samdavepollard
@samdavepollard 7 жыл бұрын
Thank You - this was extremely useful. Very nice channel you have here - easy sub.
@bkrai
@bkrai 5 жыл бұрын
Thanks for comments!
@joujoumilor2898
@joujoumilor2898 5 жыл бұрын
As usual your videos are the best explained , Sir please I have a question actually my data contains both numeric and categorical variables, so what is the best method to reduce demension and what is the name of the pckage because I'm new in R .
@dhavalpatel1843
@dhavalpatel1843 4 жыл бұрын
You can binaries your categorical variables. Try to google and learn about One-of-k coding. That way you end up with only numerical data.
@aks1008
@aks1008 Жыл бұрын
Sir can I use boruta function instead of pca in r..
@bkrai
@bkrai Жыл бұрын
Yes certainly. Here is the link: kzbin.info/www/bejne/jHalkqtojLKVe6M
@aks1008
@aks1008 Жыл бұрын
@@bkrai sir what do you like between r and python..i find r code more easy to understand and write..
@bkrai
@bkrai Жыл бұрын
In universities, business students usually use R and computer science students mostly use Python. If you are mainly looking to apply various machine learning and statistical methodologies, R is perfect.
@MinhasA
@MinhasA 6 жыл бұрын
thank you for the amazing video!
@bkrai
@bkrai 6 жыл бұрын
Thanks for comments!
@dejunli6417
@dejunli6417 2 жыл бұрын
Hi, I want to know from where can I get the iris example data ? thank you!
@bkrai
@bkrai 2 жыл бұрын
It's inbuilt in R itself. You can access it by running first 3 lines shown in the video.
@Dhrittinagpal
@Dhrittinagpal 5 жыл бұрын
Hello sir, I have been a regular follower of ur videos on R. Must appreciate the content and the ease with which you explain the concept.I have a small query. In PCA I am not able to create a biplot as I am not able to run the command - install_github("ggbiplot", "vqv"). I am getting the following message - Error in parse_repo_spec(repo) : Invalid git repo specification: 'ggbiplot'.Your help will be highly appreciated. Thanks.
@dhavalpatel1843
@dhavalpatel1843 4 жыл бұрын
library(devtools) install_github("vqv/ggbiplot") Try this!!!!!
@bkrai
@bkrai 4 жыл бұрын
Thanks for the update!
@kashgarinn
@kashgarinn 6 жыл бұрын
Great video, thanks for uploading.
@bkrai
@bkrai 6 жыл бұрын
Thanks for comments!
@rainbowdu509
@rainbowdu509 7 жыл бұрын
Hi..good day bharatendra..I want to replace one my columns with value 1 for all its elements,what is the code in R studio..thanks for your time?
@bkrai
@bkrai 7 жыл бұрын
suppose you are using following data: data(iris) To add what you indicated to a "new" column, you can use: iris$new
@rainbowdu509
@rainbowdu509 7 жыл бұрын
thanx for ur ans ..I do already have a column with different values,I wanna replace all values on that column with just 1
@bkrai
@bkrai 7 жыл бұрын
So for iris data if you want to change all values for Sepal.Length variable to 1, you can use: iris$Sepal.Length
@mamadououattara210
@mamadououattara210 2 жыл бұрын
Hi Dr, How to I use PCA to generate a score based on several variables? Regards
@Jubo256
@Jubo256 6 жыл бұрын
Hello, you put training [5] to reference the column on trg variable.... shouldn't it be training[ , 5]?
@bkrai
@bkrai 4 жыл бұрын
It is training[ , 5] in the video.
@jayashriraghunath3210
@jayashriraghunath3210 4 жыл бұрын
Awesome explanation sir...👍👍can you make a video for independent component analysis using r in the same way sir?
@bkrai
@bkrai 4 жыл бұрын
Thanks, I've have added it to my list.
@ramp2011
@ramp2011 7 жыл бұрын
Another great video. Thank you.. If your data has number of categorical columns, PCA will miss out the dependence of the target variable on these columns. Correct? In such cases what other technique can one use? Thx
@bkrai
@bkrai 7 жыл бұрын
PCA doesn't include target variable. At the time of developing a predictive model where we use a few principal components, we can include categorical variables. So, we don't miss out on the usefulness of any categorical variable that was excluded from PCA.
@vishnukowndinya
@vishnukowndinya 7 жыл бұрын
hi sir, dose it mean that, if i have x1 x2 c3 x4 (c3 is a categorical) . At 1st i have to use all the numeric (x1 2 4) variables to build pca, then adding the cat var c3 my data changes as (pc1,pc2, c3) ??? or in the begining itself i have to convert the categorical c3 into (1, 0) and then include all my input vars to form a pcs????
@BbakMs
@BbakMs 6 жыл бұрын
Sir, I am doing PCA analysis on DJ 30 Stocks and when I view pca$loadings for 30 variables, I noticed that some were not displayed. For example, Component 1 has -0.218 for Apple but then shows none for JPM, what does this mean?
@scholars.home999
@scholars.home999 4 жыл бұрын
Sir, can you please suggest how I can perform PCA on my Panel Data? -Regards
@ketanverma7839
@ketanverma7839 3 жыл бұрын
is there any other alternative package for ggbiplot ?
@bkrai
@bkrai 2 жыл бұрын
Try this for biplot ( I just now ran this in RStudio cloud, and it worked fine): library(devtools) install_github("fawda123/ggord") library(ggord)
@raisulalam6051
@raisulalam6051 4 жыл бұрын
Thank you
@bkrai
@bkrai 4 жыл бұрын
Welcome!
@sidraghayas8583
@sidraghayas8583 5 жыл бұрын
Can you please help with combined pca and ann model?
@bkrai
@bkrai 5 жыл бұрын
I'm adding to the list of future videos.
@Miichaelk
@Miichaelk 4 жыл бұрын
Thanks for this video sir, Unfortunately, I have a problem with downloading the ggbiplot package, I tried the code you used in the video and I also googled, but I can not get it to work... Do you have any suggestions on how to download the package?? Thanks in advance
@bkrai
@bkrai 4 жыл бұрын
Try this: library(devtools) install_github("vqv/ggbiplot")
@arsalanriaz7784
@arsalanriaz7784 4 жыл бұрын
@@bkrai thank you
@diaraofany7053
@diaraofany7053 5 жыл бұрын
thank you so much for the video, this helped me a litle bit, because i still dont know how to use R to produce scatter plot for EOF QBO (Quasi Biennial Oscillation). Excuse me Sir, May you help me with the script?
@bkrai
@bkrai 5 жыл бұрын
For data visualization you can find this link useful: kzbin.info/aero/PL34t5iLfZddskPZVTm03hed8K93RsyP24
@Pankajjadwal
@Pankajjadwal 7 жыл бұрын
It was a fruitful video.Can you please share the code.
@rashmisajwan1724
@rashmisajwan1724 6 жыл бұрын
I'm using stata, are there any specific commands for principal component analysis PCA in PANEL DATA Or Just simply run PCA after standardizing variables?
@bkrai
@bkrai 6 жыл бұрын
I've not used stata, so difficult to say what command will be correct.
@seaatm
@seaatm 6 жыл бұрын
Cool video! Can you do a video about Multiple Correspondance Analysis(MCA) for cualitative data? It would help me a lot
@bkrai
@bkrai 6 жыл бұрын
Thanks, I've added this to my list.
@mohammadj.shamim9342
@mohammadj.shamim9342 7 жыл бұрын
Dear Respected Sir, I wanted to install ggbiplot using the command you provided with us. but it gives me another message. The message is (Installation failed: SSL certificate problem: self signed certificate in certificate chain Warning message: Username parameter is deprecated. Please use vqv/ggbiplot) I used vqv/ggbiplot as well, but no good results. please guide me what shall I do?
@bkrai
@bkrai 7 жыл бұрын
Not sure what went wrong. May be some typo or something else. Probably you can try running commands using my R file.
Logistic Regression with R: Categorical Response Variable at Two Levels (2018)
19:47
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Principal Component Analysis (PCA)
26:34
Serrano.Academy
Рет қаралды 418 М.
Covariance, Clearly Explained!!!
22:23
StatQuest with Josh Starmer
Рет қаралды 573 М.
Principal components analysis in R
26:49
Hefin Rhys
Рет қаралды 158 М.
Feature Selection Using R | Machine Learning Models using Boruta Package
16:28
Exploratory Data Analysis with Pandas Python
40:22
Rob Mulla
Рет қаралды 509 М.
ROC Curve & Area Under Curve (AUC) with R - Application Example
19:40
Dr. Bharatendra Rai
Рет қаралды 103 М.
Handling Missing Values using R
16:07
Dr. Bharatendra Rai
Рет қаралды 44 М.
Support Vector Machine (SVM) with R - Classification and Prediction Example
16:57
Statistics 101: Linear Regression, The Very Basics 📈
22:56
Brandon Foltz
Рет қаралды 2 МЛН