If you're interested in learning more about metric spaces and topology, check out my playlist: kzbin.info/aero/PLJb1qAQIrmmA13vj9xkHGGBXRMV32EKVI
@User-gt1lu4 жыл бұрын
Could you show wich book you use?
@drpeyam4 жыл бұрын
It’s based on Ross Real Analysis and Pugh Real Analysis, but munkres is also good
@mathwizards67853 жыл бұрын
The best mathematician I have ever seen..... Sir where r u from?
@drpeyam4 жыл бұрын
Note: In Example 5 (sequences), the max should be a sup And Example 9 is a pseudometric, so be two different sets could have distance 0
@mohammedsalouani76724 жыл бұрын
Hello Dr Peyam, I think also for example 6 max should be sup . Otherwise , great video !👍
@DutchMathematician4 жыл бұрын
@@mohammedsalouani7672 It is not wrong to replace 'max' by 'sup' in example 6: actually, in most cases it is even better, since 'max' might not be attained (although sup may exist and be finite). However, in this example, the use of 'max' in the definition of the metric is actually correct. The reason for this is that we are considering continuous functions on a closed, bounded interval. The closed and bounded interval is I = [a, b]. Let f and g be continuous functions on I. Then their difference is also a continuous function. And since the function 'absolute value' is also continuous, the function h = |f - g| (being the composition of two continuous functions) is also continuous (on I). Now, by the so-called 'extreme value theorem' (see e.g. en.wikipedia.org/wiki/Extreme_value_theorem) the function h actually attains its sup and inf on the interval I, which justifies the use of 'max' instead of 'sup'. (the explanation above is what he calls 'takes some extra work' at 14:40) Hope this helps! (of course, if we allow a = -∞ and/or b = +∞, I is not bounded anymore and 'sup' should be used and we should restrict ourselves to bounded functions in order for the metric to even exist, i.e. not be +∞; but using square brackets in the definition of I implies that both a and b are finite)
@iabervon4 жыл бұрын
I just noticed that Example 9 isn't even a pseudometric; if C is a blob in between A and B, d(A,B) > d(A,C) + d(C,B).
@alegian79344 жыл бұрын
this is kinda spooky, I've been googling metric spaces and sets in general all day today... weird that you uploaded just when I needed it
@stevenwilson55564 жыл бұрын
lol spooky… the simulation is stalking you.
@isobar58573 жыл бұрын
Whenever I delude myself into believing I am clever I come here for some humility, and reach the inevitable conclusion that I am stupid.
@xhinker2 жыл бұрын
The best video on metric space, thank you!
@drpeyam2 жыл бұрын
Thank you!!!
@rembautimes880810 күн бұрын
I remember 30 years ago going to my local library and trying to understand a metric space but was left befuddled. Thanks to this video it’s clearer now. I guess with a lot more focus on machine learning, this will get a lot more attention. Great video , very funny too 😂
@drpeyam10 күн бұрын
I hope so too hahaha 😂
@zapazap4 жыл бұрын
Your example #9 is of a pseudometric: it possible to have d(X,Y)=0 without X=Y. A nice illustration of a metric in this context would be the Hausdorff metric (but the sets X and Y must be non-empty and compact). A nice simple illustration with practical application to strings and telecommunications would be the Hamming metric. I love your channel.
@stefanocarini81174 жыл бұрын
Love your Crystal clear explanations!
@IoT_4 жыл бұрын
Fun fact about Manhattan metric space : The ratio of the circumference of a circle to its diameter = 4 (Which is equal to pi in the regular euclidian metric space)
@lamepickuplines4 жыл бұрын
Is that same as taxi cab
@IoT_4 жыл бұрын
@@lamepickuplines yeah. It's mentioned in the video
@thinkmachine_3 жыл бұрын
@@lamepickuplines Yes, it is!
@bebarshossny51484 жыл бұрын
You make stuff fun I watch your videos to chill away from my stiff professor a bit I love a professor who enjoys teaching his subject In fact i wanna be one myself in the future
@jamesbentonticer47064 жыл бұрын
Are you in colleg what are you studying?
@sergioh55152 жыл бұрын
I've been having fun watching your channel again Dr Peyam. I missed it so much! I hope you continue to make videos like these, even though I know you are a busy man! :)
@Sahanie4 жыл бұрын
This is one of my favourite and most enjoyable videos from your channel. I would like to see more examples of weird metrics and topologies.
@drpeyam4 жыл бұрын
Check out my playlist :)
@Sahanie4 жыл бұрын
@@drpeyam Thank you, Dr. Peyem! Yes, I just noticed it in the description. I'll definitely go through it.
@stevenwilson55564 жыл бұрын
Never even discussed metric spaces in my undergraduate studies (BA Math, conc in Prob & Stats). Thanks for this video.
@cediemacalisang77134 жыл бұрын
Your way of explaining is relatable, sometimes concrete albeit always amazing.
@nailabenali74884 жыл бұрын
Finally I've been waiting for this!! I know that you are super busy but could you make something about(Normed space in finite dimension along with arc connexity well I don't know the exact word in English but it's called connexité par arc) thank you for making math such a fun subject to learn!!
@arturcostasteiner97353 жыл бұрын
In English, this is called connectedness by arcs or by paths. Very similar to the French term. If a set satisfies such property, we say it's arc or path connected. Dr Peyam has made a video on this, search for Topologist Sine Curve.
@nailabenali74883 жыл бұрын
@@arturcostasteiner9735 Thank u !!
@arturcostasteiner97353 жыл бұрын
@@nailabenali7488 Vous êtes les bienvenue
@channelnamechannel4 жыл бұрын
the infinity matrix norm gives a nice intuition about why iterative matrix solvers work since, for some positive definite matrix, the eigenvector with the largest eigenvalue is the stable fixed point upon iterated application of the matrix.
@hamzakamil1854 жыл бұрын
Awsome explaination. I just want to add that the properties of the distance are just 3 (2-3-4 in ur video), and we prouve that any distance is positve
@gouraviki4 жыл бұрын
Love your beautiful way of teaching...♥️
@scose4 жыл бұрын
one application of the infinity norm metric (ex. 4) is representing the time it takes to move between locations on a 2-axis machine like a milling machine or a plotter where each axis is driven independently
@drpeyam4 жыл бұрын
Really cool!
@basedmatt Жыл бұрын
super-clear explanation on metric spaces. Thank you very much!
@Icenri4 жыл бұрын
The case for d(infinity) maybe is that knowing that d(2) has all equidistant points in a circle and that d(infinity) has them in a square, we could assume that d(2) is obtained from x^2 + y^2 = d^2 and d(infinity) limits the exponent to infinity, in which case, max(x,y) would dominate and by taking roots d = max(x,y).
@aneeshsrinivas90882 жыл бұрын
you should make a video on what the definition of a topology is.
@pierreabbat61574 жыл бұрын
A couple more metric spaces: * R^n, d, where d(a,b) is the straight-line distance from a to b if the line goes through the origin, else d(a,0)+d(0,b). * Q with the p-adic metric.
@sarojpandeya97624 жыл бұрын
Thanks Dr Peyam
@willnewman97834 жыл бұрын
Example 9 does not work. Note that if A,B have a point in common, then d(A,B)=0 even if A does not equal B. The metric on subsets I know of involves defining the distance between a point and a set first, d(a,B)= inf {d(a,b)|b in B} and then defining d(A,B)=sup{d(a,B)|a in A}
@martinepstein98264 жыл бұрын
That doesn't quite work either since the sup can be infinity. One way to deal with this problem is to take d(A,B) = 1 if the sup exceeds 1.
@willnewman97834 жыл бұрын
@@martinepstein9826 Oh yeah good point
@adhambasheir45244 жыл бұрын
@will newman well if A is a subset of B the your metric gives d(A,B)=0 ... so i guess we need to define d(A,B) as max{ sup{d(a,B)|a in A} , sup{d(b,A)|b in B} } @Martin Epstein about the infinity thing i guess you just can't define a number because d(A,B)
@martinepstein98264 жыл бұрын
@@adhambasheir4524 Good point about subsets. Dr. Peyam didn't say this in the video but a metric must map to the reals by definition, so no infinity allowed. My idea is based on the "standard bounded metric" so shouldn't introduce any problems. In your example d(A,B) = 1, not 3. The metric never exceeds 1.
@adhambasheir45244 жыл бұрын
@@martinepstein9826 well i guess infinity ruined every thing xD ... in my example d(a,B) = inf { d(a,b) | b in B} which is between 2 and 3 so sup{d(a,B) | a in A} = 3 .. and by symmetry d(A,B) = sup{d(a,B) | a in A} = sup{d(b,A) | b in B} = 3
@MathAdam4 жыл бұрын
0:24 You can hear me? Feels like I'm watching "Blink."
@viktyusk4 жыл бұрын
At 3:20 the first condition is redundant: 0 = d(x, x) d(x, y) >= 0.
@jukkejukke53864 жыл бұрын
Hello Mr Peyam. Could you please make a separate lecture about Example 8 and 9. How do I calculate the integral of the absolute of the distance of two functions? Thank you very much.
@drpeyam4 жыл бұрын
Highly doubt it, you just use the formula in the examples
@dgrandlapinblanc2 жыл бұрын
Ok. Thank you very much.
@aneeshsrinivas9088 Жыл бұрын
Have you ever taken CS61B at berkeley Peyam? I actually pulled out the infinity distance during one of my CS61B projects for lighting calculations. So does this answer your question on what the infinity distance is good for.
@drpeyam Жыл бұрын
Thanks
@punditgi4 жыл бұрын
Dr Peyam reveals all!
@murielfang7553 жыл бұрын
Doc, could you pls recommend some texts or books on Topology? I’d like to study them during my winter vacation. Thank you! Wish u a great Christmas!
@drpeyam3 жыл бұрын
Munkres for sure
@murielfang7553 жыл бұрын
@@drpeyam Thank you! Will read it!
@nocomment2963 жыл бұрын
2nd video I'm watching sir
@azamatdevonaev17723 жыл бұрын
Sometimes the nature of this subject makes me laugh out of nothing because I tend to laugh when I don't understand some stuff. But this "(S,d) is not San Diego" just killed me 😂
@kaptenkrok81233 жыл бұрын
The infinity metric is useful if you play chess. Its the distance of the kings movement on a chessboard
@DanielL1433 жыл бұрын
A clear and enjoyable explanation. Thank-you.
@briantekmen7715 ай бұрын
The infinity metric (aka the Chebyshev distance) describes how a king moves in chess!
@sundaybutane97254 жыл бұрын
If my distance function is defined as follows: d(x,x)=0, d(x,y) = c where c is a constant. Is this still a metric space? At first glance it seems to be but it feels kinda wrong.
@alfiehellings28154 жыл бұрын
Yes, as long as c is non zero
@martinepstein98264 жыл бұрын
That fits the definition as long as c > 0. You can think of this metric as less of a distance function and more of a check-for-equality function. A sequence converges in this metric iff eventually all the terms are the same.
@lamepickuplines4 жыл бұрын
Yes it’s the discrete metric basically
@lamepickuplines4 жыл бұрын
Basically the indicator distance lol like and on off switch, you can in fact verify it satisfies all three even triangle inequality
@rolfjohansen5376 Жыл бұрын
Dear Dr.Peyam: """""WHEN"""" can I make use of matric-spaces, can assume they are 'there' when I solve a problem in real analysis? thanks
@soumnanema83623 жыл бұрын
Thank You!
@Lawrencewalu-ru9ov6 ай бұрын
Thank you.
@alejandrobarrantes86574 жыл бұрын
thanks for your work!! I really appreciate your effort of presenting us these educational videos!!!
@abdifatahbarkhad88904 жыл бұрын
Please Dr peyam talk about defferential equations one and two
@drpeyam4 жыл бұрын
Defferential equations, the most polite out of all equations
@sagacityparagonacademy41012 жыл бұрын
well done
@Rubertoda2 жыл бұрын
Very understandable!!!
@dominicellis18674 жыл бұрын
so distance is always either the maximum distance or the minimum but its usually the maximal distance. The last one being that every distance is both a maximum and a minimum because of the forced isomorphism defined in that metric. This reminds me of the Dyson sphere in quantum mechanics that everything point on the surface is one away from the center of the sphere and in order to perform operations on a quantum object you have to work inside of the circle radiated from the surface of the sphere so as though you don't actually measure the quantum state and loose all of the work done to figure out what its going to be and why. Are these metric spaces what they mean when describing other multidimensional spacetimes like a two dimensional time axis or fractional dimensional spacetime?
@MrPyromanwaterman4 жыл бұрын
You don't need "d(x,y) => 0" to be an axiom, you can prove this property of the distance with the three other axioms.
@drpeyam4 жыл бұрын
I added it for clarity
@aneeshsrinivas90882 жыл бұрын
@@drpeyam question then, if a student on an exam in your class ommited proving this because this axiom is redundant and follows from the other 3 axioms. would they get points taken off?
@theproofessayist84413 жыл бұрын
How about a metric space where we take the average of spread between two bounded sequences/functions or the minimum? Thinking inf(S). Wondering if there is applications to bigger picture theory building in other math branches.
@drpeyam3 жыл бұрын
Minimum wouldn’t work because then you wouldn’t have d(x,y) = 0 implies x = y. Average works because it’s just the integral of |f-g| divided by the length of the interval
@arupabinash22633 жыл бұрын
Sir, how can I convert the theorems of point set topology into the corresponding theorems in metric spaces?I am very confused. I see there are many similarities. But, still l am unable to get a clear understanding.
@RalphDratman3 жыл бұрын
This is brilliant
@revelationSandJ4 жыл бұрын
Interessantes Video 👍weiter so
@suleimanabubakar65692 жыл бұрын
Which book do you recommend for the topic to me
@omara.86324 жыл бұрын
What text book are you using to make this videos?
@drpeyam4 жыл бұрын
Elementary Analysis by Ross
@omara.86324 жыл бұрын
@@drpeyam Thanks!
@sedenion95244 жыл бұрын
Ty sm
@honerzawita8024 Жыл бұрын
U are amazing
@drpeyam Жыл бұрын
Thank you!!!
@skiplangly65917 ай бұрын
I never thought I would hear a professor make a GTA reference
@dalisabe622 жыл бұрын
What spaces are not metric? It seems that all sets composed of real and complex numbers in any dimensional space are metric spaces. The variety of the metrics suggests a preference of one over the other based on the particular application, which I would love to explore.
@drpeyam2 жыл бұрын
Any space is a metric space with the discrete metric
@dalisabe622 жыл бұрын
@@drpeyam so a discrete metric is one where the distance between any two points in the space is either zero or one. Are you saying that every metric space is necessarily a discrete metric space? My original question was: what is NOT a metric space. If I think of a space as the domain of any collection of points or objects, I would want to know how these points or objects are related to each other. It seems that every familiar space is a metric space. So are there some cases where a space is not equipped with a relation between its members? I never encountered any. I know the idea behind such formulation: is to be as abstract as possible, but there got to be some specific cases where there exists counter cases where the rule fails. I am interested in those cases so that I could appreciate the rule, if that makes any sense to you. Thanks.
@drpeyam2 жыл бұрын
That’s what I’m saying, every set with 2 elements or more is a metric space if you put the discrete metric on it. So there are no sets that are not metric spaces. But of course you can put a distance function on a set that makes it not a metric space, such as d(x,y) = -|x-y| or d(x,y) = |x|
@LibertyAzad2 жыл бұрын
May I ask which textbook you are using in class?
@drpeyam2 жыл бұрын
Ross
@ascension75374 жыл бұрын
This just seems like various examples of Pythagoras theorem.
@lamepickuplines4 жыл бұрын
Lol a bit different there. That’s a strong equality and holds only for special cases. d is a very general version of distance between points that is defined over some arbitrary space
@aanandimepani48242 жыл бұрын
Metric space is T1 space?
@User-gt1lu4 жыл бұрын
Can u tell me a good book for learning linear algebra (kann auch deutsch sein). ;D
@drpeyam4 жыл бұрын
Friedberg
@kqp1998gyy4 жыл бұрын
💕
@valor36az2 жыл бұрын
Taxicab metric = not the shortest distance between two points
@drpeyam2 жыл бұрын
For a taxicab it is
@md2perpe4 жыл бұрын
People should have some self-distance. Elements in a space should not.
@lamepickuplines4 жыл бұрын
We could just take the discrete metric there haha
@MsSlash894 жыл бұрын
Could someone please refresh my mind? Didn’t he already made a video about metric spaces? Did he just redo it better?
@drpeyam4 жыл бұрын
No, I didn’t redo them, maybe you already looked at my playlist
@MsSlash894 жыл бұрын
@@drpeyam So there are two different videos introducing Metric Spaces?
@drpeyam4 жыл бұрын
No just one, I don’t know which other one you’re referring to
@MsSlash894 жыл бұрын
@@drpeyam Oh so this is the first! Maybe I only dreamed about it!
@drpeyam4 жыл бұрын
Your dream came true lol
@MrJapogm3 жыл бұрын
Does anybody know any good book or text for this subject?
@drpeyam3 жыл бұрын
Yes, Ross Analysis or Munkres Topology
@MrJapogm3 жыл бұрын
@@drpeyam Thank you! Very kind of you
@lalhriatpuiahmar50573 жыл бұрын
Sir can i know your degree
@drpeyam3 жыл бұрын
Look at my channel name
@aneeshsrinivas9088 Жыл бұрын
9:38 if you xould drive through the buildings, You’d think something like that would come in beta testing.
@Neilcourtwalker4 жыл бұрын
How to kill 10 birds with one stone? Easy, just attach a stone to the blade of a windmill :-P
@0x90meansnop8 Жыл бұрын
Haha social distancing metric XD
@rikhalder57084 жыл бұрын
What's the best book for topology? Please Dr Peyam reply me