First, notice that the equation x^2+5|x|-6=0 contains the absolute value |x|. In order to remove the absolute value, we need to discuss it in two situations: When x0, |x|=x, the equation becomes: x^2+5x-6=0 This is a quadratic equation that can be solved by factoring or root finding formulas. Factored into: (x+6)(x-1)=0 Therefore, x_1=-6 (but x0, so this solution is discarded), x_2=1. When x
I don't know why my previous comment is not shown... A better way to approach this problem is to write complex root z in polar form, z = r e(i theta), r > 0. Deduce that theta is multiple of pi/2, then the equation can be transformed into quadratic of positive r, and be solved easily.
@HeHuang29 күн бұрын
想不到你到今天依然不修改题目。你良心何在?
@stearking57368 ай бұрын
老师…能不能幫我解e^(-2x^2+3x-1)的不定積分~~我想要過程…
@cyrusc9498 ай бұрын
我幫你看了一下 已上傳影片 最新那條KZbin comment就是 我是自學微積分,有錯請多多包涵
@stearking57368 ай бұрын
@@cyrusc949 感谢你的解答,但是这个涉及高斯积分的内容貌似
@hongkongsmartboy8 ай бұрын
解决 |x| 的二次方程,永遠要分cases (x >= 0,x < 0)
@user-machine-ship8 ай бұрын
老師請問可以做標準差與變異數的證明嗎?而標準差與變異數是用來統計分析或是有別的用法?
@gordonlee63678 ай бұрын
V
@rickyng18238 ай бұрын
The natural way came to me immediately was to write root z in polar form, z = r e^{I \theta}, where r > 0. Then you can deduce that 2 \theta = n \pi and turn the equation into of real variable r. You will still get z = \pm 1, \pm 2i \pm 3i by checking \theta = 0, \pi / 2, \pi, 3 \pi / 2.