6. Maximum Likelihood Estimation (cont.) and the Method of Moments

  Рет қаралды 61,780

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 44
@Noah-jz3gt
@Noah-jz3gt Жыл бұрын
I've never taken any regular basic statistics course and it takes literally a day to fully understand 1 lecture video. But as the instructor said, I feel much smarter after taking this lecture.
@kevinliu5299
@kevinliu5299 3 жыл бұрын
I'd like to say, this video is the best I've ever seen. The instructor's mind is very clear so that he can relate all critical notions together and depicts vivid images for us in brief.
@seulebrg
@seulebrg 3 жыл бұрын
Method of Moments starts at 32:36
@syifaamustafa954
@syifaamustafa954 3 жыл бұрын
Thank you !
@salmamorsi3003
@salmamorsi3003 3 жыл бұрын
Thanks
@jaspreetsingh-nr6gr
@jaspreetsingh-nr6gr Жыл бұрын
@ 19:20 , the dotted curve represents our ESTIMATOR for KL (theta, theta*) where as the solid line is the actual KL (theta, theta*) , the values theta and theta* are the minimum points of the estimator and the actual KL divergence resply. Can you guys help me verify if i understood correctly? Is the dotted line something else? or dis i interpret the solid line incorrectly? please help me out here..
@x.tzhang7629
@x.tzhang7629 Жыл бұрын
Yes that is what I understood as well. The point of him drawing these two lines was basically to illustrate if you have a very flat base, then even if you somehow managed to find the min of the estimator, there is still a chance that you being pretty far away from the actually parameter theta star.
@Marteenez_
@Marteenez_ 2 жыл бұрын
@28:50:00 why would there be a square root 2 pi there, I don't get the significance of what he is saying when there are no fudge factors and this is the true asymptotic variance. Why would there be any of that?
@adamzielinski2848
@adamzielinski2848 4 жыл бұрын
In 41:23 he says that it's actually enough to look only at the terms of the form X to the k-th - why is it enough?
@owenmireles9615
@owenmireles9615 4 жыл бұрын
Hi, Adam. I hope this answer suits you well. The reason terms of the form X^k suffice is "linearity". The operation of taking an average is linear, meaning you can take out the constants. It is the same reason why constants can "escape" an integral. If E is the expectation, and there's a polynomial a_0 + a_1 X + a_2 X^2 + ... + a_n X^n, its expectation is E ( a_0 + a_1 X + a_2 X^2 + ... + a_n X^n ) = a_0 + a_1 E( X ) + a_2 E ( X^2 ) + ... + a_n E ( X^n ).
@adamzielinski2848
@adamzielinski2848 4 жыл бұрын
@@owenmireles9615 Ah that's right indeed, thank you!
@jaspreetsingh-nr6gr
@jaspreetsingh-nr6gr Жыл бұрын
@@owenmireles9615 @ 19:20 , the dotted curve represents our ESTIMATOR for KL (theta, theta*) where as the solid line is the actual KL (theta, theta*) , the values theta and theta* are the minimum points of the estimator and the actual KL divergence resply. Can you guys help me verify if i understood correctly? Is the dotted line something else? or dis i interpret the solid line incorrectly? please help me out here..
@owenmireles9615
@owenmireles9615 Жыл бұрын
@@jaspreetsingh-nr6gr Hi, Jaspreet. Your interpretation seems correct. I'll just emphasize some parts which I think weren't covered as in much detail in the lecture. That's right, the dotted line represents the estimator for the KL divergence. However, the relationship between theta and theta* is more subtle... there's a bit more going on. Throughout the video, they mention that theta* is the true parameter that you're trying to find. To do this, you'd like to minimize a function. That function would be f(X) = KL(P_theta*, P_X). In words, you want to find the parameter X that is the "closest" (under KL divergence) to theta*. The graph of this f(X) is the solid line in the video. If you had perfect information, then obviously theta* is such minimizer. However, under real-world conditions, you never have perfect data, and have to resort to an approximation, that being Hat(KL). So, what you're actually trying to minimize now is g(X) = Hat(KL) (P_theta*, P_X). The graph of this g(X) is the dotted line in the video.
@jaspreetsingh-nr6gr
@jaspreetsingh-nr6gr Жыл бұрын
@@owenmireles9615 Understood, using data (for sample mean) and then the guarantees given by LLN and Continuous functions under LLN ensures hat(KL) reasonably approximates KL divergence--thanks Owen, will ping u again if i get stuck on subsequent lectures.
@ojichimezie8627
@ojichimezie8627 2 ай бұрын
I need the full lectures on this subject
@brandomiranda6703
@brandomiranda6703 3 жыл бұрын
how does his theorem in 30:55 mean that the MLE just going to be an average?
@brandomiranda6703
@brandomiranda6703 3 жыл бұрын
how is the fisher information used in modern machine learning - especially in practice?
@visualAnalyticsVA
@visualAnalyticsVA 4 жыл бұрын
46:29 one to the last row in the matrix left side should be x_1^(r1-1), x_2^(r1-1), etc. instead of r-1
@danielyin3043
@danielyin3043 6 жыл бұрын
17:10 The word is his name Rigollet in French
@ogusqiu6926
@ogusqiu6926 Жыл бұрын
22:50
@joyprokash4013
@joyprokash4013 2 жыл бұрын
Thank you very much.
@brandomiranda6703
@brandomiranda6703 3 жыл бұрын
Would have been nice to put in the description or title or somewhere that this lecture focus on Fisher Information (Matrix) - to make it easier to search...I honestly don't know how or why I found this...especially since it was at the bottom of my search results. MIT videos that are relevant should be at the top...
@Noah-jz3gt
@Noah-jz3gt Жыл бұрын
41:04 - moment : expectation of power
@MrCraber
@MrCraber 7 жыл бұрын
Fisher proof is awesome!
@chtibareda
@chtibareda 3 жыл бұрын
what does support of P tetha means please?
@not_amanullah
@not_amanullah 26 күн бұрын
thanks ♥️🤍
@edulgl
@edulgl 6 жыл бұрын
This is way too advanced for me. I can understand the calculus but when he starts talking about convergence in probability and distribution, i get really lost. Can anyone point me to a book where i can get a better understanding on these topics of inference and convergence?
@Harihar_Patel
@Harihar_Patel 6 жыл бұрын
asymptotic theory?
@conorigoe1213
@conorigoe1213 6 жыл бұрын
www.stat.cmu.edu/~siva/705/lec4.pdf www.stat.cmu.edu/~siva/705/lec5.pdf www.stat.cmu.edu/~siva/705/lec6.pdf I found these helpful!
@SrEstroncio
@SrEstroncio 6 жыл бұрын
Try Wasserman's "All of Statistics" its pretty concise and straightforward, and designed for people coming in from other fields.
@edmonda.9748
@edmonda.9748 5 жыл бұрын
@@SrEstroncio so true, i was gonna say same thing, it explains them very well and in detail
@gouravbhattacharya2694
@gouravbhattacharya2694 3 жыл бұрын
I have now a clear idea of Fisher
@pranishramteke7642
@pranishramteke7642 4 жыл бұрын
That was a harry potter on broom entry!
@yd_
@yd_ 2 жыл бұрын
What a doozy. Great lecture.
@rainywusc3051
@rainywusc3051 4 жыл бұрын
damn it‘s hard
@caunesandrew1476
@caunesandrew1476 4 жыл бұрын
He's so bad at cleaning the board omg
@imtryinghere1
@imtryinghere1 4 жыл бұрын
He has a broken leg and MIT has staff that come in and clean after each lecture.
@HojuneKim914
@HojuneKim914 3 жыл бұрын
@@imtryinghere1 I honestly think it's more the eraser than his lack of skill
@saubaral
@saubaral 4 жыл бұрын
i hate when teachers be like : who does not know this: and then go and read about it. LOL
@Indiker27_games
@Indiker27_games 4 жыл бұрын
agree
@ativan6959
@ativan6959 4 жыл бұрын
i literally search oof moment
@not_amanullah
@not_amanullah 26 күн бұрын
this is helpful ♥️🤍
7. Parametric Hypothesis Testing
1:18:51
MIT OpenCourseWare
Рет қаралды 57 М.
17. Bayesian Statistics
1:18:05
MIT OpenCourseWare
Рет қаралды 240 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
The Fisher Information
17:28
Mutual Information
Рет қаралды 71 М.
Simon Sinek's Advice Will Leave You SPEECHLESS 2.0 (MUST WATCH)
20:43
Alpha Leaders
Рет қаралды 2,6 МЛН
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 2,4 МЛН
In Statistics, Probability is not Likelihood.
5:01
StatQuest with Josh Starmer
Рет қаралды 1,3 МЛН
13. Regression
1:16:02
MIT OpenCourseWare
Рет қаралды 70 М.
What is Fisher Information?
19:24
Iain Explains Signals, Systems, and Digital Comms
Рет қаралды 23 М.
1. Introduction to Statistics
1:18:03
MIT OpenCourseWare
Рет қаралды 2 МЛН
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 216 М.