Substitute x=y-5 into the given equation and rearrange to (y+1)^4-(y-1)^4-80=2*4(y^3+y)-80=0. Divide by 8: y^3+y-10=0. By inspection y=2. Divide by (y-2): y^2+2y+5=0, which has roots y=(-2±4i)/2=-1±2i. Thus, x=y-5=2-5=-3 and -1±2i -5=-6±2i
@SALogics7 сағат бұрын
Very nice! ❤
@denisrenaldo3506Күн бұрын
I don’t understand why using m=x+5. If you want to be shorter (and more magic), it’s better to use m=x+3. You obtain m(m^2+6m+13)=0. So, m=0 or m=-3+2i or m=-3-2i. Finally, x=-3 or x=-6+2i or x=-6-2i.
@SALogics7 сағат бұрын
Very nice! ❤
@zawatskyКүн бұрын
4:00 [(a+b)+(a-b)][(a+b)-(a-b)]=(a+b+a-b)(a+b-a+b)=2a*2b=4a²b². Так сосчитать гораздо проще.
@SALogics7 сағат бұрын
Very nice! ❤
@saaawa14 сағат бұрын
{(x + 6)^2 + (x + 4)^2}{(x + 6)^2 - (x + 4)^2} = 80 (x^2 + 10x + 26)(x + 5) = 10 x^3 + 15x^2 + 76x + 120 = 0 (x + 3)(x^2 + 12x + 40) = 0 Since from determinant x^2 + 12x + 40 > 0 for any real x, x = -3
@SALogics7 сағат бұрын
Very nice! ❤
@DonRedmond-jk6hjКүн бұрын
Justr using the difference of squares identity to start with will get you to the same place without having to make all the changes of varobles..
@SALogics7 сағат бұрын
Very nice! ❤
@НеллиПшено16 сағат бұрын
Решаем методом устного счета. 80=81-1 81=3^4 x+6=3 x=-3 Good luck!