Art of Problem Solving: 2015 AMC 10 A #23 / AMC 12 A #18

  Рет қаралды 12,398

Art of Problem Solving

Art of Problem Solving

Күн бұрын

Пікірлер: 18
@npip99
@npip99 9 жыл бұрын
3:30 That was a very interesting way to dodge long division, I never thought about it like that.
@M_Chen333
@M_Chen333 6 жыл бұрын
"9 plus 8 minus the 1/Gives us 16. And we're done." Seems Richard is just as good at poetry as he is at math.
@tomato6844
@tomato6844 4 жыл бұрын
I know... He should go into poetry
@yjaspal2011
@yjaspal2011 4 жыл бұрын
You can also use Vietna’s thereom to get the roots, r and s, are r+s=a and rs=2a. Dividing both of these expression gets us r+s/rs = 1/2. Cross-multiplying, we get 2r+2s=rs. Factoring a bit, we get Rs-2r-2s=0. Factor some more, r(s-2)-2s+4=4. In the end, we get (r-2)(s-2)=4. Solving for r and s, we get that these values of (r,s), (-1,1), (0,0),(4,4),(5,3),(6,3),(-2,1). Putting this is the equation, r+s=a, we get that a can equal 8,9, and -1. Adding them all up, we get 16 which is C.
@devsquares
@devsquares 2 ай бұрын
thats what i did, but instead of dividing both equations i substituted (r+s) into a in rs=2a
@ericzhan3454
@ericzhan3454 6 жыл бұрын
You could look at it by noticing that the determinant must be a square number, then checking the solutions are integers. Of course, that way you could easily miss the -1.
@themathaces8370
@themathaces8370 4 жыл бұрын
*discriminant not determinant
@jaw5ome628
@jaw5ome628 4 жыл бұрын
A quicker solution would be realizing a is an integer and that you have x^2 meaning your answer would have to be a perfect square and looking at the answers you see you only have one
@dansman1729
@dansman1729 4 жыл бұрын
non sequitur
@זאבגלברד
@זאבגלברד 4 жыл бұрын
you can find from x+y=a and xy=2a that y=2x/(x-2) and this is a y=k/x that was moved 2 to the right and 2 up. and now it is simple to figure the various options for the roots,
@zmaj12321
@zmaj12321 5 жыл бұрын
Interesting shortcut to avoid long division
@theawesomewizard4750
@theawesomewizard4750 8 жыл бұрын
What does it mean by the "zeroes of the function?"
@rajpanchal9226
@rajpanchal9226 8 жыл бұрын
the values at which f(x)=zero for example in function f(x)= x + 3 f(x)=0 when x = -3 so -3 is a zero of the function :)
@sallyxu4668
@sallyxu4668 3 жыл бұрын
I used a pretty risky quadratic formula method & completed the square of the discriminant when I had 2 minutes left, and it actually worked :D
@themathaces8370
@themathaces8370 4 жыл бұрын
Just get that a^2-8a=a(a-8) is a perfect square by discriminant. 9,8 obviously work. Then we find that -1 works as well, so 16.
@jdoan2017
@jdoan2017 9 жыл бұрын
Simon's Favorite Factoring Trick!!!: www.artofproblemsolving.com/Forum/viewtopic.php?f=133&t=623889
@helo3827
@helo3827 3 жыл бұрын
I just use vietas and bashed.
Art of Problem Solving: 2015 AMC 10 A #24 / AMC 12 A #19
4:40
Art of Problem Solving
Рет қаралды 13 М.
Art of Problem Solving: 2017 AMC 10 A #25
11:51
Art of Problem Solving
Рет қаралды 11 М.
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 1,9 МЛН
这是自救的好办法 #路飞#海贼王
00:43
路飞与唐舞桐
Рет қаралды 134 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 8 МЛН
Art of Problem Solving: 2012 AMC 10 B #25 / AMC 12 B #22
9:54
Art of Problem Solving
Рет қаралды 26 М.
Art of Problem Solving: 2015 AMC 12 A #22
12:51
Art of Problem Solving
Рет қаралды 11 М.
Art of Problem Solving: 2012 AMC 10 A #25
12:05
Art of Problem Solving
Рет қаралды 16 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 1,6 МЛН
how to study less and get higher grades
11:16
Gohar Khan
Рет қаралды 1,1 МЛН
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 85 М.
What exactly is e?  Exploring e in 5 Levels of Complexity
13:34
3 factoring tricks that you probably didn’t know
11:34
blackpenredpen
Рет қаралды 153 М.
Art of Problem Solving: 2020 AMC 10 A #22
9:38
Art of Problem Solving
Рет қаралды 19 М.
Art of Problem Solving: 2014 AMC 10 A #24
11:37
Art of Problem Solving
Рет қаралды 20 М.
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 1,9 МЛН