Approximating (1.998)^4 by using differential

  Рет қаралды 331,866

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 636
@Phi1618033
@Phi1618033 3 жыл бұрын
Mathematician: "Let's use calculus to solve this." Engineer: "It's 16."
@williamhewitt4748
@williamhewitt4748 3 жыл бұрын
its 2 minus (.002 ^4)
@williamhewitt4748
@williamhewitt4748 3 жыл бұрын
2- .0000016
@williamhewitt4748
@williamhewitt4748 3 жыл бұрын
1.9999984
@williamhewitt4748
@williamhewitt4748 3 жыл бұрын
15.9999984
@petachad8463
@petachad8463 2 жыл бұрын
@@williamhewitt4748 Bruh if you don't get the joke don't say anything.
@aryansant
@aryansant 5 жыл бұрын
I think he uses Integral Calculus in grocery shopping.
@jamanm.2837
@jamanm.2837 5 жыл бұрын
He saves a cent okay, that’s a lot for us asains
@jamanm.2837
@jamanm.2837 5 жыл бұрын
Asians*
@merubindono
@merubindono 6 жыл бұрын
Engineer: it's about 16. Add 25% contingency factor. Let's make it 20.
@jmaymay1997
@jmaymay1997 6 жыл бұрын
As long as there's a safety factor you can't be wrong
@dougr.2398
@dougr.2398 6 жыл бұрын
No, it is LESS than 16!!!
@emperorpingusmathchannel5365
@emperorpingusmathchannel5365 6 жыл бұрын
Engineers make me cringe
@dougr.2398
@dougr.2398 6 жыл бұрын
GLaDOS some engineering students become physicists, and viceversa
@AstroTibs
@AstroTibs 6 жыл бұрын
Doug didn't understand the joke.
@michel_dutch
@michel_dutch 6 жыл бұрын
Next: solve a calculus problem using only arithmetic. 😁
@saketsharma827
@saketsharma827 5 жыл бұрын
Michel ten Voorde Actually its been done. Sir Isaac Newton used basic arithmetics applied to calculus to find out the motion of heavenly bodies
@adityasohani7964
@adityasohani7964 5 жыл бұрын
Trapezium rule for area
@gubby740
@gubby740 6 жыл бұрын
Approximately 16, you’re welcome . . . . . Don’t take it seriously lol
@blackpenredpen
@blackpenredpen 6 жыл бұрын
ok.
@yuvrajdhillon1036
@yuvrajdhillon1036 5 жыл бұрын
Weird flex but ok
@harrymills2770
@harrymills2770 5 жыл бұрын
Grievance studies graduate: But I don't want x^4 to grow. That's racist.
@PackSciences
@PackSciences 6 жыл бұрын
Binomial expansion of (x+y)^4 with x = 2 and y = -0.002 and picking the zero-th and first order: (x+y)^4 -> x^4 + 4x^3 y = 16 - 4*2*2*2*0.002 = 16 - 0.032 = 15,936 Which is exactly the same result as yours. In fact, that's exactly the same thing because you consider the derivative of (x+y)^4 with respect to y to be a constant, so you pick up to the first order. One could argue that you can use Taylor expansion of (2+x)^4 in x=0. You get (2+x)^4 = 16 + 32 x Plugin in x=-0.002 and you get 15,936 Oh, what a surprise, we also find the same result. How odd! In fact, all these methods are equivalent.
@sergioh5515
@sergioh5515 6 жыл бұрын
This is because this is a first degree Taylor polynomial in disguise...
@PackSciences
@PackSciences 6 жыл бұрын
Yes, that's what I said.
@sergioh5515
@sergioh5515 6 жыл бұрын
PackSciences yep...agreed... as a side note I'm pretty sure this vid is for calc 1 students
@TomJakobW
@TomJakobW 6 жыл бұрын
Little typo there in the first paragraph; it's (of course) 16 - 0.064; you basically just multiplied by 0.001 instead of 0.002
@mrmeowtv6248
@mrmeowtv6248 6 жыл бұрын
I can see this working with small exponents, but at larger exponents it's a bit harder to calculate the binomial coefficients or remember the Pascal Triangle at higher degrees. In terms of mental math, I'd prefer using calculus. Unless there is a trick that I might not know. If so please tell. :D
@josephjackson1956
@josephjackson1956 5 жыл бұрын
You know someone is smart when they use Wolfram Alpha as a calculator
@Exachad
@Exachad 5 жыл бұрын
This is a more conplicated demonstration of tangent line approximations.
@tanelgulerman3073
@tanelgulerman3073 6 жыл бұрын
First thing came into my mind was using Binomial Theorem; (2-dx)^4= 2^4 - 4. 2^3 .(dx) ........ so on. Rest of the terms include dx to the power greater than 1 so we can ignore them for any practical purposes since they will be negligibly small. So 16 -0,064 = 15,936 Thank you for this problem, was interesting to see. #YAY
@tushar.mp4
@tushar.mp4 6 жыл бұрын
Is it only me who heard *Doraemon* tune in the intro? Btw thanks for this amazing video
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Tushar Patel Thank you! And you were right about the intro tune
@nootums
@nootums 6 жыл бұрын
@@blackpenredpen my life was a lie, Now I cannot unhear it!!!
@ralfbodemann1542
@ralfbodemann1542 6 жыл бұрын
The relative deviation of your approximation from the real value is 0.0006%. For practical purposes, this is usually neglectable.
@geekjokes8458
@geekjokes8458 6 жыл бұрын
Ralf Bodemann its even nicer that the relative difference between 2 and the actual input is *bigger* than the result!
@wontpower
@wontpower 6 жыл бұрын
*negligible
@devd_rx
@devd_rx 5 жыл бұрын
Why is deviation between (0.99)^2 and (1.01)^2 too high
@petachad8463
@petachad8463 2 жыл бұрын
@@wontpower bruh you do people always correct someone else's spelling mistakes. BRO ENGLISH IS NOT MOST PEOPLE'S FIRST LANGUAGE.
@harshvardhangupta2399
@harshvardhangupta2399 6 жыл бұрын
sir you are so great, the best thing I like about you is you always teach us happily which makes us understand maths easily, keep going sir never let us down, thankyou. H
@kingbeauregard
@kingbeauregard 6 жыл бұрын
A lot of people are making too much of how this particular case lends itself to a variety of approaches. But the derivative approach can be used for just about any situation where the function is differentiable. For example, back in physics class, we used to calculate very small time dilation effects (which involved square roots of differences of squares) by differentiating the time dilation function and using that to calculate the delta. Also, this ties into the Taylor Series, which can be used to approximate complicated functions with polynomials: en.wikipedia.org/wiki/Taylor_series
@deutschlandmeinvaterland1568
@deutschlandmeinvaterland1568 6 жыл бұрын
Excellent video. Also, it's really awesome to read all these comments offering other solutions as well! Math is so fun!
@sammariofan
@sammariofan 6 жыл бұрын
Cal 2 pays off! No kidding. Great video, it's great to see application of calculus, love how alive you look and how the brain is being used!
@collegemathematics6698
@collegemathematics6698 5 жыл бұрын
It easier to use the linear approximation using first two terms in taylor series L=f(a) +d/dx f(a) (x-a)..... 1 where a is constant, and L stand for linear approximation of the original function f(2)=2^4=16......2 d/dx f(2) =4(2)^3=32.......3 Substitute 2 and 3 in 1 L=16+32(x-2) ....4 SUBSTITUTE x=1.998 in 4 implies L=15.936
@gianlucamolinari3490
@gianlucamolinari3490 5 жыл бұрын
This is really interesting how calculus can be used to solve such problems!
@calyodelphi124
@calyodelphi124 6 жыл бұрын
I took a more direct approach using a bit of precalculus and knowing the binomial expansions of (a+b)^n: (1.998)^4 = (2-0.002)^4 a = 2 b = -0.002 = -2E-3 (scientific notation makes this process a bit easier) (a+b)^4 = 1a^4b^0 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + 1a^0b^4 Powers of a from 0 to 4: 1, 2, 4, 8, 16 Powers of b from 0 to 4: 1, -2E-3, 4E-6, -8E-9, 16E-12 From there, plug in for a and b: 1x16x1 + 4x8x-2E-3 + 6x4x4E-6 + 4x2x-8E-9 + 1x1x16E-12 16 + 32x-2E-3 + 24x4E-6 + 8x-8E-9 + 16E-12 16 + -64E-3 + 96E-6 + -64E-9 + 16E-12 From there I just expanded the scientific notation into full decimal representations and added the positives together, then the negatives, and then I subtracted: 16.000 000 000 000 00.000 096 000 000 00.000 000 000 016 + --------------------------------------- 16.000 096 000 016 0.064 000 000 000 0.000 000 064 000 + ----------------------------------- 0.064 000 064 000 16.000 096 000 016 00.064 000 064 000 - ------------------------------------ 15.936 095 936 016 Exact value without having to manually multiply 1.998 by itself four times over and having to waste time with long-form multiplication. c: Although your method is a lot more eloquent, a whole lot faster, and if you're just doing quick back of the envelope math for a crude engineering calculation just to get a quick idea of what's going on or because your tooling just isn't that precise anyways... it's perfectly A-O-K to use.
@dekrain
@dekrain 6 жыл бұрын
@Calyo Delphi: I did only one addition using nine's-complement.
@abc_cba
@abc_cba 6 жыл бұрын
Calyo Delphi Can you do a video of this ? I'm sure it would be more explanatory.
@forloop7713
@forloop7713 6 жыл бұрын
Engineer would simply say 16lol
@HandledToaster2
@HandledToaster2 6 жыл бұрын
no u
@forloop7713
@forloop7713 6 жыл бұрын
@@HandledToaster2 succ
@elchingon12346
@elchingon12346 6 жыл бұрын
This is an excellent explanation for local linear approximation for anyone who has basic knowledge of derivatives
@JustinsRealmMC
@JustinsRealmMC 6 жыл бұрын
Clever tool that I can use in computing harder examples. Those in the comments section missed out the point. He knows he can use algebra in breaking apart the given but what he wants to teach you is to approximate a function using differentiation.
@edtix
@edtix 6 жыл бұрын
Here in Poland we can't have calculators on exams at university so I've learned this on the beginning. And this is simple example. I remember people who was so angry with professor :) very useful approach not only for power. Try to calculate 4th root of 1558.57 without this method.
@Piyushks02
@Piyushks02 6 жыл бұрын
I just wonder why didn't my teacher tell this very basic question when we were being taught calculus (it's been more than even a month since we started doing differentiation). Thanks to u I am able to understand this concept more!
@moskthinks9801
@moskthinks9801 6 жыл бұрын
Binomial Theorem can also solve it. (2-0.002)^4=16-4(8)(0.002)+6(4)(0.000004)-4(2)(0.000000008)+(0.000000000016) =16-0.064+0.000096-0.000000064+0.000000000016 =15.936095936016
@moskthinks9801
@moskthinks9801 6 жыл бұрын
GG to everyone who used this!
@tipoima
@tipoima 6 жыл бұрын
Yea, but it's more of a general method to use the derivative.
@moskthinks9801
@moskthinks9801 6 жыл бұрын
tipoima I know I know, but this is a special approach for the power functions, and yes, the derivatives are a bit easier for approximation
@jadebriones1633
@jadebriones1633 5 жыл бұрын
M. Shebl just multiplying 1.998 by itself four times is probably as fast as this method though...
@WindsorMason
@WindsorMason 5 жыл бұрын
@@jadebriones1633 the only multiplication involved (aside from one factor of 3) are powers of 2 and 10, and the addition/subtraction all line up nicely so it's quite quick
@singcheung2362
@singcheung2362 5 жыл бұрын
(2-0.002)^4=(2-0.002)^2^2 ~(4-0.008)^2 (note: 0.002^2 is too small, we regard it as 0) ~(16-0.064) (note: 0.008^2 is too small, we regard it as 0) =15.936
@Deibler666
@Deibler666 5 жыл бұрын
This is very interesting! This approximation method is very precise and you can always experiment with other values as well.
@davidjames1684
@davidjames1684 5 жыл бұрын
I converted 1.998 to 999/500 then squared it in my head to 998,001 / 250,000 which is about 3.992. Notice how the delta of 0.002 was made into a new delta of 0.008 so there is a cube factor in there (2*2*2 = 8). So by squaring the intermediate result again, the new delta should be 0.064 (8*2*2*2).
@TimeTraveler-hk5xo
@TimeTraveler-hk5xo 4 жыл бұрын
I was thinking about this a little differently... In general, we have: (a + b)^n = C0*a^n + C1*a^(n-1)*b + ... + Cn*b^n, where C0, C1, ..., Cn are the binomial expansion coefficients. If 0 < |b|
@jeramiet154
@jeramiet154 5 жыл бұрын
This is how I've always done mathematics since I began learning numbers. Never showing my work other than a couple of numbers I needed to remember along the way was always a problem in school.
@anshumanagrawal346
@anshumanagrawal346 3 жыл бұрын
If you wanna use approximation by calculus, it's better to use the form (1+x)^n ~ 1+ nx, where x
@antoniomonteiro1203
@antoniomonteiro1203 5 жыл бұрын
It can even be made simpler: To square x-a you get approximately x^2-2ax once that a is very small and so a^2 will be smaller. In our case, we get 4-2 . 2 . 0.002 which is 4 - 0.008. Repeating (because we want the fourth power), we get 16 - 2 . 4 . 0.008 = 16 - 0.064.
@nranify
@nranify 6 жыл бұрын
Your videos are addictive. I enjoy these ingenious connections and tricks you come up with. Keep it up:) Much love from Kent State Uni
@ahmedzuhairy7683
@ahmedzuhairy7683 3 жыл бұрын
That what we call him The mean value theorem , thanks for teach us .❤️
@andrewsmitley
@andrewsmitley 6 жыл бұрын
I figured out what you were doing halfway in and just kind of reveled in the genius
@DanDart
@DanDart 6 жыл бұрын
this happens every video
@duggydo
@duggydo 6 жыл бұрын
Based upon your previous video, I thought you might do a video like this one! :)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
duggydo yup!
@potassiumpermangante
@potassiumpermangante 6 жыл бұрын
Awesome Video, Really Informative and Useful.Thank you so much.
@Kuratius
@Kuratius 6 жыл бұрын
My first thought was Taylor series, which would essentially give you the same result (first order approximation) . When you wrote down 2-0.002 I thought you might use the Binomial theorem. But your way of explaining it is nice for students that don't know about Taylor series yet.
@pankajsoni4257
@pankajsoni4257 5 жыл бұрын
brilliant video
@iSkeleBoss
@iSkeleBoss 6 жыл бұрын
Much better explanation than my prof gave me. Thanks!
@ThePharphis
@ThePharphis 6 жыл бұрын
I find differentials make more sense with a picture showing that you're basically just multiplying slope by deltaX to get the change in y due to the tangent (and also why the points must be close)
@INDIAN-kq6yo
@INDIAN-kq6yo 5 жыл бұрын
Awesome. Now I understand the usage on differential calculus.
@dr.lightbulbsunprog3263
@dr.lightbulbsunprog3263 6 жыл бұрын
Really nice one man !! Love from India
@AdityaKumar-ij5ok
@AdityaKumar-ij5ok 6 жыл бұрын
You get pretty much excited when doing math, and that's great!
@Roarshark12
@Roarshark12 6 жыл бұрын
Really enjoyed this one. Thanks for refreshing my knowledge of differentials!
@steffahn
@steffahn 6 жыл бұрын
0:14 - took me 5 minutes. Starting with 1998 = 2*(1000-1) 1998^4 = 2^4 * (1000 - 1)^4 [a:= 1000, b :=1] = 16* (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4 = 16 * (1,000,000,000,000 - 4,000,000,000 + 6,000,000 - 4,000 + 1) = 16,000,000,000,000 - 64,000,000,000 + 96,000,000 - 64,000 + 16 = 16,000,096,000,016 - 64,000 - 64,000,000,000 = 16,000,096,000,016 - 1,000,000 + 936,000 - 1,000,000,000,000 + 936,000,000,000 = 15,936,095,936,016 EDIT: OH WAIT, lol, confused your notation for meaning 1998, since I’m not that used to using "." for decimal points (although, I know, I adopted this very comment to US notation [but remember, I did everything on paper first]). Anyways, then the result would be 15.936095936016. And actually calculation was a lot easier with the separators every 3 digits.
@PackSciences
@PackSciences 6 жыл бұрын
That's correct, but the goal of the exercise was to get an approximation. Your result should have been truncated to the first order in the binomial expansion.
@steffahn
@steffahn 6 жыл бұрын
I know. I was answering question right at the beginning, when he asked how long we’d need for a complete computation.
@PackSciences
@PackSciences 6 жыл бұрын
Well there is no point to do the whole computation, you just wasted your time
@steffahn
@steffahn 6 жыл бұрын
Well if you plan to comment this under every comment here, that presents or states they did a full computation, too, then go ahead and waste your time.
@PackSciences
@PackSciences 6 жыл бұрын
shots fired!
@kensonmalupande2424
@kensonmalupande2424 2 жыл бұрын
Well explained 💪💪💪
@mathteacher2651
@mathteacher2651 5 жыл бұрын
Another excellent explanation....
@vishalbanerjee6389
@vishalbanerjee6389 6 жыл бұрын
Hey sir Vishal from India thank you for this lesson it help me lot in my mathematic now I can easily solve question like these
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@princesetne6330
@princesetne6330 6 жыл бұрын
Very applaudable, sir :) thanks!
@AmitKumar-qn1wy
@AmitKumar-qn1wy 6 жыл бұрын
I like it. It's a very good way to use calculus
@aapkafreeschool6051
@aapkafreeschool6051 6 жыл бұрын
Loved the video!
@easymathematik
@easymathematik 6 жыл бұрын
There is a nice relation to statistics. This way showed in the video is used in "propagation of uncertainty" in physics and statistics. It's called "variance".
@sbkscuify
@sbkscuify 5 жыл бұрын
It’s beautiful how the universe works.
@aspirenux8599
@aspirenux8599 5 жыл бұрын
Holy fuck.... finally something does sense 4 me about why calculus is needed
@mukeshchand5301
@mukeshchand5301 5 жыл бұрын
I read this in my high school calculus class
@subramaniamchandrasekar1397
@subramaniamchandrasekar1397 5 жыл бұрын
I learnt it today. Great. I learnt why I forgot calculus. Must be for good.
@orlandotorres2648
@orlandotorres2648 5 жыл бұрын
I loved it, beautiful
@MatheusNasi
@MatheusNasi 6 жыл бұрын
y= 1.998^4 = (2 - 2/1000)^4 Factor out the 2: y= 2^4(1 - 1/1000)^4 Let x= 1/1000 Using the aproximation: (1±x)^n = 1 ± nx, for |x|
@yurenchu
@yurenchu 4 жыл бұрын
At 4:03 , it's _wrong_ to suggest that Δy is (approximately) equal to the derivative dy . (Note that if instead of (1.998)⁴ we had to calculate (1.997)⁴ , then we could use the _same_ relation y = x⁴ and the _same_ "starting point" 2⁴ , so by definition the _actual derivative_ should also remain the same.) I think it's more proper to say Δy ≈ (dy/dx) * Δx where dy/dx (and not dy) is actually the derivative. Since y = x⁴, we have dy/dx = 4x³ , so we get Δy ≈ 4x³ * Δx (This way, we're also not dealing clumsily with the distinction between dx and Δx .) With x = 2 and Δx = -0.002 , this results in Δy ≈ 4*2³ * (-0.002) = -0.064 hence y = 16 + Δy ≈ 16 - 0.064 = 15.936 - - - - - By the way, the video's approach is all just an application of the linearization of a (smooth) function f(x) near a point x=c , f(c+Δx) ≈ f(c) + f'(c)*Δx where f'(c) is defined as the value of (df/dx) at x=c. (In this particular example, we have f(x) = x⁴ and c=2 , and so f(1.998) ≈ f(2) + f'(2)*(-0.002) .)
@bigrobbyd.6805
@bigrobbyd.6805 6 жыл бұрын
Excellent refresher, sir. Thank you!
@musawaleed224
@musawaleed224 4 жыл бұрын
Thank you for excellent explanation
@merveilmeok2416
@merveilmeok2416 5 жыл бұрын
Good teaching. Thank you, Sir.
@kanewilliams1653
@kanewilliams1653 5 жыл бұрын
Amazingly clever.
@blockthrower3947
@blockthrower3947 4 жыл бұрын
I think using the binomial theorem and just doing the first two orders of it would give you the exact same answer you had, but with it you can got even more exact, if you want to do it for some reason
@davidseed2939
@davidseed2939 5 жыл бұрын
perhaps a shorter rouute is to transforn dy=4x^3 dx into dy/y = 4 dx/x dy= y( 4 * -0.001) dy =16(-0.004) Y = 16- 0.064 =15.936
@ethancheung1676
@ethancheung1676 6 жыл бұрын
Interesting application
@davidseed2939
@davidseed2939 4 жыл бұрын
Quicker using binomial expansion. X = 16(1- d)^4 d=10^-3 X=. 16(1-4d + 6d^2...) X= 16 -64d + 96d^2 X= 16- 0.064 + { 100×10^-6 = 10^-4 } X = 15.9361
@manabendramaity4089
@manabendramaity4089 5 жыл бұрын
love you so much sir...you are my inspiration... love you sir... Good bless.
@hecz0r
@hecz0r 6 жыл бұрын
easier approach: ((2-0.002)^2)^2 done
@bludeat7398
@bludeat7398 6 жыл бұрын
u can use ^4 power right from start and binomial formula ;)
@dexter9313
@dexter9313 6 жыл бұрын
Done it (using powers of 10 notations to simplify 0.002 and powers computing). Took less than 5 minutes to get the exact value : 15.936095936016 . Calculus isn't needed, only square identity is ( (A+B)^2 = A^2+2AB+B^2 ).
@hecz0r
@hecz0r 6 жыл бұрын
Blu Deat who the fuck actually knows that
@whebon7266
@whebon7266 6 жыл бұрын
Blu Deat (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 a=2 b=-0.002 16-0.064+0.000096-0.000000064-0.000000000016 = 15.936095936
@whebon7266
@whebon7266 6 жыл бұрын
*15.936095936016
@trueriver1950
@trueriver1950 6 жыл бұрын
I noticed that delta x / x is 1 per mille (1 part per thousand) I know that the proportion is multiplied by the power, so looking for delta y approx 4 per mille. 4 x 16 is 64 so have to subtract 64/1000 from 16. 15.936. Same as your answer but using an extra short cut
@carlitoshadoken
@carlitoshadoken 5 жыл бұрын
badass ... thanks for the video .... I love math 🙂✌️
@connorhorman
@connorhorman 5 жыл бұрын
L(x) = f(2) + f’(2)(x-2) near x=2. I learned that a few weeks ago in my calculus class. L(1.998) = 16 + 32(-0.002) L(1.998) = 16 - 0.064 L(1.998) = 15.936
@perveilov
@perveilov 6 жыл бұрын
Yo, I've learn this thing b4 but don't know a thing, thanks for clearing this up after 1 year :)
@shashengwan6417
@shashengwan6417 6 жыл бұрын
use formula y-f(a)=f'(a)(x-a); transform to y=f'(a)(x-a)+f(a) where the y is the final value; a=2 x=1.998 f(a)=a^4 f'(a)=4a^3 the y value will be the same as the video.
@mayankraghuvanshi7883
@mayankraghuvanshi7883 6 жыл бұрын
It's amazing!!!!... And have a request can you make a video on different graphs.
@darnellyiadom3596
@darnellyiadom3596 6 жыл бұрын
That's so cool!
@brunohidemisaijo2769
@brunohidemisaijo2769 6 жыл бұрын
This is beautiful.
@Koisheep
@Koisheep 6 жыл бұрын
What I would do is finding the tangent line r to the curve y=x⁴ at x=2. If r: y=ax+b (which I can determine using the power invested on me by HS calculus) Then I'd say f(1.998)=a(-0.002)+b. I never used the differential itself for approximations but I can always rely on good ol' HS calculus
@1972hattrick
@1972hattrick 6 жыл бұрын
Konhat Lee Sakurai 4x^3 is the start of your tangent equation. Good intuition and I believe this is part of most HS Calculus curriculums
@knutritter461
@knutritter461 4 жыл бұрын
In my studies of chemistry we had to attend lectures in statistical thermodynamics as well. So we had to calculate a lot with the amount of permutations etc. Weirdest part for us was calculating with numbers no computer on this planet can calculate. Like: What is the result of N! with N=10EXP(23) We had to estimate as well using analytical maths.
@martinepstein9826
@martinepstein9826 6 жыл бұрын
Another slightly different approach: We know the fourth order Taylor expansion will be a polynomial in x-2 that's equal to x^4, so to find that expansion we can do x^4 = (2 + (x-2))^4 = 2^4 + 4*2^3*(x-2) + 6*2^2*(x-2)^2 + 4*2*(x-2)^3 + (x-2)^4 = 16 + 32*(x-2) + 24*(x-2)^2 + 8*(x-2)^3 + (x-2)^4 And truncate to your desired accuracy
@leoitshere
@leoitshere 6 жыл бұрын
This is equivalent to computing the linear approximation of x^4 around x=2, which is y = 32x - 48.
@war_reimon8343
@war_reimon8343 4 жыл бұрын
The same procedure as considering a central value(2) and the error(0.002). The bottom limit gives your solution.
@debarghamukherjee666
@debarghamukherjee666 6 жыл бұрын
Working out this sum with Calculus is damn easy... - An IITJEE aspirant 😂
@rahulsharma-cu7wp
@rahulsharma-cu7wp 5 жыл бұрын
apparently "*an* jee aspirant" doesn't seem to know proper grammar
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
@@rahulsharma-cu7wp dafq
@spooky2526
@spooky2526 3 жыл бұрын
@@rahulsharma-cu7wp bro it's an they said it correctly... "An" is used for words that start with a consonant sound and "A" for words that start with a vowel sound, since iit is a shortening for Indian Institutes of Technology, the sound "in-" from Indian is indeed a consonant sound so the abbreviation uses the same word, an iitjee aspirant is correct. If you wish to verify this go on to any of the official websites, they always refer to it as "an iit-" not "a iit". Looks like you don't know proper grammar, this took one Google search to verify, and a few more to make sure my info was correct.
@TrackopGaming
@TrackopGaming 6 жыл бұрын
Great and useful video.
@michaeld9682
@michaeld9682 6 жыл бұрын
Love it. Thank you
@fCauneau
@fCauneau 6 жыл бұрын
Taking 2 in factor, we have (1-1/1000)^4, approximately 1 - 4*1/1000, which gives immediately the correction to 16 : -64/1000. Your interesting demo gives the shortcut to the Taylor dev. on first order...
@gauravlath19
@gauravlath19 6 жыл бұрын
Wow!!👍👍👌👌👌
@andi_tafel
@andi_tafel 6 жыл бұрын
Love the music in the end! #YAY
@chabanefarid7660
@chabanefarid7660 4 жыл бұрын
You can use the formilation of taylor and you well get an exact value becouse x^4 is defferentiable 4 times
@Gold161803
@Gold161803 6 жыл бұрын
This is pretty much the f(x+h)-f(x) from the numerator of the derivative definition, *isn't it*?
@scathiebaby
@scathiebaby 6 жыл бұрын
yes, that's what the video is about
@lewiszim
@lewiszim 6 жыл бұрын
Yes. This is linear approximation. We're estimating the value of 1.998^4 is by examining what the value of the tangent line to x^4 at x=2 does out at x=1.998. The definition of the derivative uses the rise/run definition of slope to approximate the slope over certain values (x to x+h). As we make h smaller and smaller, our approximation becomes more and more accurate. So we take the limit as h approaches zero. The analog is that they both involve something linear.
@harshgarg7542
@harshgarg7542 6 жыл бұрын
Wow you made the calculation more complicated kudos
@BariumBlue
@BariumBlue 5 жыл бұрын
Tldr; we know 2^4=16, and if we model that as y=x^4 we can get the slope at x=2, multiply that slope by DeltaX where DeltaX = 1.998-2 to get a linear approximation of the difference in Y from x=2 to x=1.998, and that to 16, et voila
@pwnmeisterage
@pwnmeisterage 6 жыл бұрын
His math trick is solid. Although I admit that I'm lazy enough to simply use a calculator for such a simple function, lol. And I admit that I'm far more impressed by the practiced dexterity he uses to casually swap out the two colored pens on the fly.
@Nudnik1
@Nudnik1 6 жыл бұрын
thank you awesome
@Manuel-pd9kf
@Manuel-pd9kf 5 жыл бұрын
How would you do 1.998^3.998
@Zwaks
@Zwaks 6 жыл бұрын
Wish you posted this in April.
@TheBaggyT
@TheBaggyT 5 жыл бұрын
Took 4 mins 43 sec..... just by doing (1.998^2)^2. Took under 2 mins by expanding (a - b)^4 and substituting a=2 and b=0.002. Both answers were exact.
@povilasdapsys7765
@povilasdapsys7765 6 жыл бұрын
multiplying it out on a paper took me 8 minutes and 44 seconds ^^ (I still managed to make a mistake 27+8=36 ;-;)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
paul : )
@nejlaakyuz4025
@nejlaakyuz4025 6 жыл бұрын
GG
@harrysvensson2610
@harrysvensson2610 6 жыл бұрын
paul :)
@abaundwal
@abaundwal 6 жыл бұрын
paul : )
@tuffcrunch9428
@tuffcrunch9428 6 жыл бұрын
: )
@suryaajha5953
@suryaajha5953 6 жыл бұрын
I used Local Linearity principle and found the equation of tangent line at 2 using derivatives and then calculated function value of tangent line at 1.998 to have a better approximation of this problem
@randomguy8461
@randomguy8461 5 жыл бұрын
(2000-2)^4 use Pascal's triangle to easily do this, and then whatever you get move the decimal 12 places to the left
@dougr.2398
@dougr.2398 6 жыл бұрын
Why not just use Pascal’s triangle at 1 4 6 4 1 and skip all the function blabber? You’ll get an EXACT answer from the expansion of a^4 + 4 a^3•b + 6•(a^2)(b^2) + 4 a• b^3 + b^4 . What’s an error estimate for the procedure used?
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 960 М.
delta y vs. dy (differential)
11:24
blackpenredpen
Рет қаралды 281 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
il COMPITINO di ARITMETICA a PISA: BELLISSIMO !!!
10:49
Marco Damele
Рет қаралды 642
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 696 М.
Solutions to x^y=y^x
13:09
blackpenredpen
Рет қаралды 1,1 МЛН
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
Use calculus, NOT calculators!
9:07
bprp calculus basics
Рет қаралды 447 М.
What if we changed a Fresnel's integral?
12:17
blackpenredpen
Рет қаралды 22 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
Half of a deathly area...
15:44
Michael Penn
Рет қаралды 1,4 МЛН
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 430 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН