yeah. sometimes when i have five options i feel like to choose minus two of those.
@blackpenredpen5 жыл бұрын
Hahah, I do the same too!
@Himineejimineee2 жыл бұрын
you mean that when you have -2 options, you choose 5 of them...
@AndDiracisHisProphet2 жыл бұрын
@@Himineejimineee it's a joke
@Himineejimineee2 жыл бұрын
@@AndDiracisHisProphetI know! you just interpreted the notation backwards, that's all!
@AndDiracisHisProphet2 жыл бұрын
@@Himineejimineee no. it was a joke
@roderickwhitehead5 жыл бұрын
Every champion needs an entrance anthem! Epic.
@magnetonerd45535 жыл бұрын
I remember when I first learned this technique (spent a lot of time reading Knuth back in the day). Has amazing applications to approximating inverse square laws for low orbits (small distances).
@thenewguy75275 жыл бұрын
Even though I didn't know anything here, I liked how you explained everything in detail!
@illbeinyourdreams52594 жыл бұрын
same cant wait to understund what he is saying
@arlenestanton99553 жыл бұрын
Yes, he is very enthusiastically through
@jadegrace13125 жыл бұрын
Using the limit test, the series converges if |b|
@IISH4RKZzII5 жыл бұрын
This is so cool I just became a patreon and bought the best friend t-shirt😃😃
@blackpenredpen5 жыл бұрын
Awwww thank you!!!
@barrowmeoct044 жыл бұрын
So wait, I had 2 'cookies' in the Jar, My brother decides to eat 4 of them , leaving me -2 cookies I come home after work one day thinking " man, I could devour 5 cookies" How many ways of choosing 5 cookies do I have? -6
@aimantajuararique353910 ай бұрын
yup got to love math
@frozenturtl8279 ай бұрын
yep
@toqa0025 жыл бұрын
So grateful that is an another part! 💛
@chaitanyagadekar50255 жыл бұрын
When i was Joined first time this channel by ur integrals Problems...! At the first time i couldn't Understabd what ur talking. But now i can understand everything dude :)
@pierreabbat61575 жыл бұрын
There are -6 ways of choosing 5 objects from a set of -2. Are there also -6 ways of choosing -7 from a set of -2?
@stephenbeale47655 жыл бұрын
if it helps, you can just think of it as a taylor series in disguise, which is what it is
@Yadobler3 жыл бұрын
@@stephenbeale4765 why is everything a taylor series in disguise! e^c? taylor series rCk? taylor series sin(x)? taylor series dflasnkfslkfjsdfkljlfjaflkdjlf
@arequina5 жыл бұрын
I just realized I'm wearing the best friend shirt while watching this...whoaaah!
@blackpenredpen5 жыл бұрын
Awww thank you!!!
@IvyANguyen5 жыл бұрын
Wow! This was so cool! Never knew negative numbers were possiblre in these. Are things like C(3,5) (where the 2nd number is higher than the 1st) really undefined or is there an actual answer to those, too?
@blackpenredpen5 жыл бұрын
That will be just 0.
@honzaa62355 жыл бұрын
dr peyam's appearance ( 3:59 ) was perfect ahah
@dnpendown31995 жыл бұрын
Well Your HairStyle is quite transformed over an Year sir😂😂😂, Thanks for the lessons!! Love from India🇮🇳
@melissamiranda25255 жыл бұрын
OMG That's awesome!! I love math every day more
@Lamiranta5 жыл бұрын
At the end of calculus I will have one best friend... That can save my life P.S. Thanks for a video about GBT. Waiting for Cantor set
@habiboi_3 жыл бұрын
Came to this video completely clueless, now I feel like I have a pretty solid understanding of this! tysm
@holyshit9226 ай бұрын
Use it for expanding 1/sqrt(1-2xt+t^2) (Possibly need to use binomial theorem twice)
@GaryTugan5 жыл бұрын
Awsome. And NOW I know what your Best Friend means :)
@MrGiancarlo365 жыл бұрын
14:32 isn't -2 ?
@angelmendez-rivera3515 жыл бұрын
The condition is that |a| > |b|, but this can be reformulated so that one need never state this condition. Notice that for all pairs (a, b) in R^2, the equation a + b = max(a, b) + min(a, b) is true. Thus one can rewrite (a + b)^r = max(a, b)^r·[1 + min(a, b)/max(a, b)]^r, and now the series is bound to converge regardless of what the pair (a, b) is, since min(a, b)/max(a, b) is by definition less than 1 in absolute value.
@karanpurohit263 жыл бұрын
Awesome 😎
@SuleymanKel Жыл бұрын
why is a>b a condition?
@angelmendez-rivera351 Жыл бұрын
@@SuleymanKel |a| > |b| is a condition because 1 > |b/a| is a condition. Otherwise, the series diverges, unless you rearrange the series to be in terms of |a/b| instead.
@techgod3605 жыл бұрын
Could you please make a video on how to be better at trigonometry, please?
@techgod3605 жыл бұрын
Thank you very much. You are the best KZbinr.
@Mystery_Biscuits5 жыл бұрын
Valid for abs(b/a) < 1
@ronycb7168 Жыл бұрын
The falling factorial, generalised binomial coefficient .. seems interesting, thanks!
@kkenny5 жыл бұрын
Mr blackpenredpen, can you please make a video about the purpose or usefulness of calculus? I really need to know so that I can be more motivated to study Calculus 2. Thanks!
@sensei97675 жыл бұрын
Differential equations are really important in physics. Alot of things are derivatives: velocity, acceleration, density, ...
@shahjahonsaidmurodov Жыл бұрын
A lot of the early parts of calculus are mainly finding rates of change (and the rates of change in those rates in change), and in finding exact areas under curves. One real life use case of this that I can think of is with distance/time, speed/time, acceleration time graphs. The speed/time graph represents the change in distance The acceleration/time graph represents the change in speed The distance/time graph represents the area under a speed/time graph And the speed/time graph represents the area under an acceleration/time graph. Calculus will almost only be useful in this topic (kinematics) when those graphs are not straight lines (when they are curves). This is because with straight lines, the rate of change is just the gradient, and the area under the curve is just a triangle. Calculus is useful for the more realistic cases, like when acceleration is not constant (resulting in the speed/time graph being a curve, so you can’t perfectly work out the area underneath it using simple triangles).
@ssdd99115 жыл бұрын
(r)k can be r! if (negative integer)!/(negative integer)! is defined if the dividing by 0 parts can be cancelled out
@afernandesrp5 жыл бұрын
You emphasized so much on the exponent being a Real number that now I want to know about if it was a complex number. Can (a+b)^ni be done?
@SuleymanKel Жыл бұрын
yes
@bachirblackers72992 жыл бұрын
7:35 falling factorials or falling powers . Another annotation like powers anderlined .
@davidwright84325 жыл бұрын
I need to watch the other videos! Just came on this cold. My initial guess was that you'd have (-2)!/(5)!(-7)!. , simply using the 'restricted' binomial coefficient form. Then the second term in the generalized denominator vanished, but in the end, reappeared! This is the first time my brain has hurt after any of your excellent videos. Memo to self: start at beginning, not middle! (I already knew the 'traditional' 'n choose r' formula.) the difference between us: you knew what you were doing; I didn't. But I'll work on it1 thanks.
@shahsamir44424 жыл бұрын
Please please tell me why infinite terms? I didn't understand?
@lilyyy4115 жыл бұрын
Rip... It doesn't work for complex numbers or does it?
@blackpenredpen5 жыл бұрын
Icestrike411 Official it does!!!
@lilyyy4115 жыл бұрын
@@blackpenredpen :thinking: we need a video on that. (I know you did it with a different method before)
@danielgates75595 жыл бұрын
Icestrike411 Official search up Laurent series... I do agree with you that complex analysis videos are going to be fun.
@ThaSingularity5 жыл бұрын
If you like binomial coefficients, then you should check out Gaussian binomial coefficients.
@ikarienator2 ай бұрын
This raises an interesting point: formally, (a+b)^n and (b+a)^n may not be the same.
@filipjansson88855 жыл бұрын
Why do we not put K! x (r-K)! On the denominator?
@roderickwhitehead5 жыл бұрын
I wondered the same thing... and I was too lazy to think about it.
@davidwright84325 жыл бұрын
Comment on several of the comments: people keep wondering what about complex numbers. My guess is that unless there's a 'super-generalization', 'n choose r' can't work for complex numbers because they aren't ordered the way integers are; there's no notion of a 'next bigger' or 'next smaller' complex number. I'd love to be proved wrong - because the solution would be mind-boggling - to my mind anyhow.
@zxf072 жыл бұрын
Thanks.. From 🇧🇩
@user-bf7zo1lh1z5 жыл бұрын
if the power is zero don't you need to add the condition that a is not equal to negative b?
@pbj41843 жыл бұрын
It is assumed the viewer would know that
@beri41383 жыл бұрын
How do I solve: Find the coefficient of x^12 in the expression: (x^5+x^6+x^7+...)^2 * (1+x+x^2+...)^8
@epic0tom1135 жыл бұрын
Any reason why this one isn’t public?
@blackpenredpen5 жыл бұрын
To make the people who actually ready my description special. : ) Thank you!
@epic0tom1135 жыл бұрын
blackpenredpen you’re the one who deserves the thanks 😁
@timeonly14015 жыл бұрын
It's a closely-guarded secret. Now we'll have to kill everyone who watched this video. ;-)
@blblbl27505 жыл бұрын
it will converge if |b| < |a| and diverge if |b| > |a| (ratio test), not sure about the case |a| = |b|..
@lvc67175 жыл бұрын
Hey! Nice video! I was wondering what text font did you use in your pdf related rates doc from a few weeks ago?
@jelojavier53934 жыл бұрын
May I ask a 'dumb' question, is the constant term in polynomials a coefficient? This question is for the sum of the coefficients for polynomial expansion with a constant term. Thanks!
@devianawijaya77355 жыл бұрын
why for n /in/mathbb{Z^{+}}, a interval for values of x so that the expansion will be valid must be applied?
@_P_a_o_l_o_5 жыл бұрын
Just out of curiosity, how do you prove that the formula is valid? To me, it looked like you pulled it out of the hat, so I would be happy to see a derivation of the formula
@willnewman97835 жыл бұрын
You can take the taylor series for (1+x)^r, and note that it is what the video days for a=1, b=x. Then, write x=a/b, and multiply through by b^r to get the formula for (a+b)^r.
@timeonly14015 жыл бұрын
Nevermind the proof; I want to lay my hands on that hat!!
@_P_a_o_l_o_5 жыл бұрын
will newman Thank you very much, I hadn’t thought of that! Very neat
@chidielijahnwakpa94825 жыл бұрын
Pretty cool, but a bit confused where you expressed r! as r(r-1)(r-2)...[r-(k-1)]. Isn't it not meant to be r! = r(r-1)(r-2)...[r-(k-1)][r-(k-1)-1][r-(k-1)-2]...3•2•1, which can again be written as r! = r(r-1)(r-2)...[r-(k-1)](r-k)! ? Thanks, best regards from Nigeria.
@mauricepanero5 жыл бұрын
Surely if a>b you will get convergence?
@jadegrace13125 жыл бұрын
|b|
@SlipperyTeeth5 жыл бұрын
Is the Generalized Multinomial Theorem next?
@loukafortin62255 жыл бұрын
Is there a binomial theorem for roots?
@andreapaps4 жыл бұрын
Would the condition be abs(b/a)
@SuleymanKel Жыл бұрын
why is the condition a>b? I don't understand
@marcushendriksen84154 жыл бұрын
If b and r are both negative, does that mean its binomial expansion will have all its terms positive?
@marcushendriksen84154 жыл бұрын
The reason I think so is that every b term with an odd degree will be negative, and its corresponding coefficient will have an odd number of negative factors, thus the whole thing should be positive.
@1suoregnad5 жыл бұрын
thank you
@dadkinson4 ай бұрын
The r choose k explanation came after the -2 choose 5 example, which felt inverted to me. Great video, though, thank you
@GreenMeansGOF Жыл бұрын
aCb=Γ(a+1)/(Γ(b+1)*Γ(a-b+1)) for all real (or maybe complex😳) numbers?
@dipanjandutta49635 жыл бұрын
How to expand fractional power??...Sir can you please make a video on such a topic...
@Nickesponja5 жыл бұрын
Now do it for trinomials
@roderickwhitehead5 жыл бұрын
See video description for link to Part 3.
@marcushendriksen84154 жыл бұрын
Fun fact: merely summing the binomial coefficients for r=1/2 gets you the square root of 2!
@SuleymanKel Жыл бұрын
in which case?
@marcushendriksen8415 Жыл бұрын
@@SuleymanKel in which case what? It's a fun fact dude, there's nothing deep going on here 🤣
@SuleymanKel Жыл бұрын
r=1/2 for which equation exactly? @@marcushendriksen8415
@Engr.vin95204 жыл бұрын
what if you are going to find the n term of binomial