Check out our premium machine learning course with 2 Industry projects: codebasics.io/courses/machine-learning-for-data-science-beginners-to-advanced
@codebasics5 жыл бұрын
Part 2 of this naive bayes tutorial. Email spam detection: kzbin.info/www/bejne/pHmshoytg5JoqK8
@agvlogs57733 жыл бұрын
Great things is that - you recommend other people's channel as well. It seems u r just trying to make people learn something no matter whose channel. Respect🙏🙏
@Marshall_Mohammed9 ай бұрын
This is the first time I am exploring machine learning and Python, I have never tried to learn Python. But your tutorials are just awesome, it is much easier to learn and understand the concepts. Great Work!❤👏
@ZEHRAİLKAYASLAN2 ай бұрын
I think you are the best teacher. Thanks to you, I am learning data science. I hope I can find a job in this field. Greetings from Turkey.❤🤩
@prakharmishra29775 жыл бұрын
thanks a lot sir,for your great support,I started my data science path through your videos really great mentor,altruistic human being i am proud of you sir!!
@codebasics5 жыл бұрын
hey Prakhar, thanks for your kind words and I wish you all the best. I am sure you will become a successful data scientist one day. good luck :)
@vibestouchessoul26024 жыл бұрын
@@codebasics sir we waant full play list of deep lerning and real world data science and machine learning projects
@ashish314162 жыл бұрын
Simplicity is the ultimate sophistication. You are amazing!
@flamboyantperson59365 жыл бұрын
Great to see you back with a new tutorial. Your idea of first explaining theory then going to practical is awesome. That's awesome.
@codebasics5 жыл бұрын
hey flaboyant person. I was expecting to see your comment. How are you ?
@flamboyantperson59365 жыл бұрын
@@codebasics It's impossible I won't like and reply to your video. I am great fantastic. How are you and how is your health now?
@aryanverma75065 ай бұрын
Your Playlists worked as Revision before my interview. Thank You for your support
@codebasics4 жыл бұрын
Exercise solution: github.com/codebasics/py/blob/master/ML/14_naive_bayes/Exercise/14_naive_bayes_exercise.ipynb Step by step guide on how to learn data science for free: kzbin.info/www/bejne/jJ_CnqCFqraeiaM Machine learning tutorials with exercises: kzbin.info/www/bejne/nZ7Zp5Sll9Jqm7M
@ayushibansal79473 жыл бұрын
This is the best tutorial on you tube. I understand concepts easily.
@codebasics3 жыл бұрын
I am happy this was helpful to you.
@midhunskani4 жыл бұрын
We need more tutorials on deep learning and start a new AI tutorials. Your machine learning tutorials are really good
@LS15QD3 жыл бұрын
You are fantastic! If you were a lecturer you would be the one everyone likes!
@sreesai4729 Жыл бұрын
That was the best ever tutorial I watched about naive bayes.... Thank you so much ❤
@levyax19647 ай бұрын
Great intro. For the last line of code in notebook, I think we shall use X, y instead bc now it's time for full model evaluation: np.mean(cross_val_score(GaussianNB(), X, y, cv = 5))
@geeksfornongeeks45463 жыл бұрын
You really know how to explain jargons in simple language. Thanks a lot
@zananpech15225 ай бұрын
I found that RandomForest classifier performs slightly better than Naive bayes model. anw, love your tutorials, thank u for your hard works :)
@deepanshuaggarwal70425 жыл бұрын
Your teaching skills are best. Please continue this series and covers all topics of ML. If not possible, then plz provide link so that we can study. There is no channel which teaches ML the way you are. Hope, you will come to INDIA and do your dream job "Organic farming "
@codebasics5 жыл бұрын
Oh deepanshu.. I want to do that and spread awareness of eating right. Anyways but yea I have plan to cover many more topics in ML, stay tuned.
@shaiksuleman31914 жыл бұрын
Super B SIr Cyrstal clear Explanation.There are some many videos on machine learning but no one cann't explain as you.
@codebasics4 жыл бұрын
Thanks and welcome
@AmanSingh-bk1um4 жыл бұрын
Good keep doing these AI videos, i liked it good to see the flow of functions in single video.
@milindprakash88554 жыл бұрын
You are doing wonderful job ...really learnt a lot from your videos
@user-wr4yl7tx3w2 жыл бұрын
this is a really good example explanation
@MDNAZMUNHASANNAFEES-yz7vq8 ай бұрын
you are the best man. I am being not Naive.
@aniketjha59194 жыл бұрын
Sir these are the best videos with best explanation,Thanks alot for these sources. Please try to upload more projects and please help and explain more detail about when to use which classifiers. Thankyou
@ravikumarrai73253 жыл бұрын
Sir, I got one doubt here that, since you have created dummies in this project, you should drop the first dummy column, in order to avoid Multi-colinearity. Please revert back with your comments if I am wrong
@r0cketRacoon9 ай бұрын
I agree, have u figured out the answer?
@dragnar47433 ай бұрын
oh yeah, dummy variable trap
@supersql84063 жыл бұрын
Great video, great teaching, great speed, great other misc stuff like fillna, drop, concat. Please make more of these types of videos! Subscribed!
@codebasics3 жыл бұрын
I am happy this was helpful to you.
@spicytuna082 жыл бұрын
what a gift of explanation!!!
@sidharthkumthekar31792 жыл бұрын
Very well explained sir! Thanks :-)
@Spiray4 жыл бұрын
Wonderful video, thank you. Simple but well-explained! It has helped me a lot. =)
@codebasics3 жыл бұрын
Glad it helped!
@msctube454 жыл бұрын
Thank you for this very well explained Tutorial.
@codebasics4 жыл бұрын
Glad it was helpful mario!
@channel-lz5og3 жыл бұрын
Always love the u teach. ..u are amazing
@codebasics3 жыл бұрын
Glad it was helpful!
@jepsmyt5 жыл бұрын
Hello, Thanks for the explanation. I was wondering dont we need to normalize the data? Let me know your thoughts on this.
@mohannads27572 жыл бұрын
Naive can deal without any Feature Scaling
@devanshgoel90702 жыл бұрын
thank you bhai for the explanation
@pranjalgupta94274 жыл бұрын
Very nice video sir can I used logistics regression also because I think it also give same result as naive bayes
@dragnar47433 ай бұрын
Generally, people suggest for using GaussianNB if we are dealing with continuous feature like age & fare. And BernoulliNB for Binary type of data like female & male. categoricalNB for discrete features like Pclass. So, can GaussianNB can take all types of features??
@GlobalDee_3 жыл бұрын
Great, thanks for this series...Pls can u do series on evaluation metrics,I will love to see explicit explanation on it.
@mohammadkassir35455 жыл бұрын
Please complete tutorials for deep learning
@sulimanallahgabo10805 жыл бұрын
just i was looking for , thanks sir oh u re great great .....
@codebasics5 жыл бұрын
Thanks man. I really appreciate love from all of you :)
@sulimanallahgabo10805 жыл бұрын
@@codebasicsas usual many thank to u pls if u have material for data science of don't mind send to me ,suliman_allahgabo@yahoo.com
@nastaran101010 ай бұрын
Hi. Thanks so much.
@ashishzine142 жыл бұрын
Great job sir thank u
@codebasics2 жыл бұрын
Glad it was helpful!
@tagoreji21433 жыл бұрын
thanks a lot SIR
@pythonenthusiast92924 жыл бұрын
sir , how did you come to know that the data is a bell curve (gaussian distribution).
@mohammedmunavarbsa5734 жыл бұрын
super video
@yes_i_am83784 жыл бұрын
Hey @codebasic you are teaching way is awesome. i hv question here. why is there a target variable in unsupervised learning?
@dhainik.suthar3 жыл бұрын
why my predict_proba return >1 and
@azus98193 жыл бұрын
same issue
@manavgora8 ай бұрын
can we also do "One Hot Encoding" instead of dummy variables.
@codingmadesimplified4 жыл бұрын
Awsome!But I Have A doubt why we have not normalize out dataset certain columns?
@Aniquekhan Жыл бұрын
thanks
@aaditstudent2 жыл бұрын
I have a small query here. Why did we not drop the either female/male column after one hot encoding to avoid dummy variable trap?
@JatinSharma-tu2zg4 жыл бұрын
Sir Hindi main bhi bana dijiye pls aap bohut acha samjha rahe hain
@codebasics4 жыл бұрын
sure jatin. KZbin me codebasics hindi search karo, maine already those ML ke video hindi me upload kiye hai.
@mariav12343 жыл бұрын
Do you not need to remove one of the dummies "male" or "female"? It does not make sense to have both of them, since in that dataset, who is not male is female. To my knowledge that is an essential step.
@zutubee Жыл бұрын
Yes your right, these are negatively correlated. Including both of the features would make gender have higher influence on inference
@flamboyantperson59365 жыл бұрын
I have a request if you could make one video on it that would be very helpful. I want to know when we make a UDF in python how can I check it at each and every step function is working or not before completing the whole UDF
@kamilazim54984 жыл бұрын
sir make tutorials on Natural language processing(NLP)
@विशालकुमार-छ7त3 жыл бұрын
From where you have learned NLP???? ( I assume that you have done something for learning NLP)
@cedricvumisa74163 жыл бұрын
thank you
@cnuvadali4 жыл бұрын
super
@debatradas92683 жыл бұрын
thank you so much
@codebasics3 жыл бұрын
Glad it was helpful!
@sayantandas70544 жыл бұрын
Sir, why there is a target variable????? like it's a clustering algorithm i.e unsupervised...and target variable is used in supervised
@nitishkeshri23783 жыл бұрын
"target" is a variable, you can take anything as a variable
@SaiChand44923 жыл бұрын
Good explanation but the problem is, in the dataset I'm not able to find jack and rose :/
@ramandeepbains8622 жыл бұрын
Sir plz explain when to take the mean median mode for null values .....
@anasahmed46824 жыл бұрын
shouldn't we split the data first and then perform preprocessing or does it not matter?
@laxmandesai5733 жыл бұрын
Afaik, the order dosen't really matter. If you split first, you'd need to preprocess all the parts individually.
@jaiprathapgv22734 жыл бұрын
Should I use mean method or median method for Nan because in one video you told us to use median method in this video it is mean method. Which one is the best right to use?
@zutubee Жыл бұрын
Median is more robust to outlier so generally a better idea. Features like age are normally distributed hence mean can also be safely used
@michaelrall39163 жыл бұрын
Just for the ones who might be as stupid as me and were missing the "survived" column: On kaggle there are two files. One test and one train file. Take the train file instead :)
@OnlineGreg2 жыл бұрын
thanks for this video! one thing i dont understand: at 2:33 P(queen) should be 1/4 or? and P(diamond) 1/13. as there are 4 queens and 13 diamonds in the deck
@ivanherrera102 жыл бұрын
You are right, I think there is an error in the presentation.
@HerlonCosta5 жыл бұрын
Waw, i am a first! 😃😃 #LovePython
@codebasics5 жыл бұрын
oh yup. Hanzo.. you got the "first commenter" award :) ha ha...
@rahmaaja6600 Жыл бұрын
thanks a lot.. can i ask to you, what if i want to show xtest result after tf-idf sir? I have tried only with the xtest code but the results are not as desired
@Gauravkr00715 жыл бұрын
Hii , the lectures are just amazing , cn u plz make a tutorial on how to write custom layers in keras like we make in variational autoencoder . Plz man therre is almost no resource in internet explaining it properly
@codebasics5 жыл бұрын
Thanks gaurav for appreciation. I have noted down the topic you suggested and will get to it in future 👍
@mvs693 жыл бұрын
why we use train_test _split, we can use cross_validation fro better results, cant we?
@nikhilgaikwad99544 жыл бұрын
In a categorical dataset , how can we decide whether the problem can be solved by using Naive Bayes algorithm or no? Or which algorithm will give high accuracy?
@codebasics4 жыл бұрын
Based on type of problem you might end up using one or the other algorithm. You can use gridsearchCV to evaluate performance of different alogs with different parameters. Please watch my video in this same series "it is called hypertunning parameters using gridsearchcv"
@MohamedAshraf-zs6nv4 жыл бұрын
how you decide which feature to keep and use in the model and which to drop? I mean is there any strategy to handle this situation?
@Star_z_0720 күн бұрын
may i know the reason of using one hot encoding but not label encoding ??...can anyone clear my doubt
@worldcomingtoanend Жыл бұрын
by saying male as a feature are u sure u did not confuse it with sex. I thought sex would be the feature with values such as male, female. Unless you meant male as a feature taking on values yes or no?
@JainmiahSk5 жыл бұрын
Sir how is your health? I'm waiting for your videos. Sir, how to encode multiple variables at once?
@codebasics5 жыл бұрын
hey Jainmiah, my health is improving. The full recovery might still take one complete year but at least I am in a position to upload videos now.
@JainmiahSk5 жыл бұрын
@@codebasics I Pray God to recover you fast to your GOOD Health. #LoveCodeBasics and #LoveYouSir.
@sukantithakur42254 жыл бұрын
hi,the titanic data we used earlier in DecisionTreeClassifier model. i campared the score is higher in DTC than Naive Bayes and we get probability in DTC also,so just wanted to ask how to know which model is the best to use in realtime?please suggest.
@Yang11235 Жыл бұрын
Does we don't need to drop one dummy column? Dose the dummy variable trap only for linead_mode?
@r0cketRacoon9 ай бұрын
I agree, have u figured out the answer?
@akshaybanaye4 жыл бұрын
Hi, I am getting following error: ValueError: Input contains NaN, infinity or a value too large for dtype('float64'). But I checked and there is no NA value in my dataframe. inputs.info() Gives me this output: RangeIndex: 891 entries, 0 to 890 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Pclass 891 non-null int64 1 Age 891 non-null float64 2 Fare 891 non-null float64 3 female 891 non-null uint8 4 male 891 non-null uint8 dtypes: float64(2), int64(1), uint8(2) memory usage: 22.7 KB
@onatmufasa05222 жыл бұрын
I have question, why you did not drop either fenale or male column? In your previous tutorials, you said one column should be dropped if converting using dummy. Thanks...
@r0cketRacoon9 ай бұрын
I agree, have u figured out the answer?
@aryanverma75065 ай бұрын
Better than Andrew NG
@jyrust17134 жыл бұрын
hey u know parameters prior_fit in naive bayes for what? i dont understand in documentation thx
@karannchew25343 жыл бұрын
Hi, A couple of questions, hope someone could help please: 1) I thought Gaussian NB only take continuous features value. But here, there are continouse (e.g. Age) and discrete (e.g. Gender) value. Can I use Gaussian NB if all features are discrete value? 2) One hot encoding split the Gender data into two data: Male and Female. These features are related i.e. mutually exclusive. Does Gaussian NB algorithm jointly 'process' these two data as one feature or two separate feature? Hope someone could enlighten. Thanks.
@thebrainfeed4022 жыл бұрын
hey i have the same doubts regarding Gaussian NB. Did you figure it out? Would be really helpful for me:)
@isaakimaliev55843 жыл бұрын
y should be a 1d array, got an array of shape (179, 5) instead.
@sougandhhm5 жыл бұрын
hello sir, Please do some videos on Natural Language processing, I am waiting for this badly
@codebasics5 жыл бұрын
wow....actually thats the topic I am going to cover next. You read my mind almost. I will start that series soon.
@245uday4 жыл бұрын
@@codebasics yes...i am also waiting...I started studying data science a few days back...your way of teaching are simply awesome...
@maresh_vlsi4 жыл бұрын
could not convert string to float: 'Birnbaum, Mr Jakob' how to eliminate this error
@Lifebw9to54 жыл бұрын
sir why you have used GaussianNB model instead of using Logistic model or any other
@codebasics4 жыл бұрын
Because this tutorial is on naive Bayes 😊
@Lifebw9to54 жыл бұрын
@@codebasics so can be use any other model to perform this task of mail classification or this model is best suited for this task
@ayazahmed96115 жыл бұрын
Sir can u upload more videos on ML ALgorithms like this??
@codebasics5 жыл бұрын
yes Ayaz. sure. I have the plan to upload more videos on this topic.
@asheeshyadav55194 жыл бұрын
Sir Is it necessary to learn behind mathematics of machine learning algorithm or some overview of mathematics of machine learning algorithm Sir please tell me please Because I am very confused
@codebasics4 жыл бұрын
You need to know some math. Not very much in depth. So don't worry too much about it. If you want to become machine learning engineer or data scientist who solves complex problem than of course advanced math knowledge is always useful
@asheeshyadav55194 жыл бұрын
@@codebasics Sir if I want machine learning Engineer than if I have some knowledge of math Please reply I wait
@nilanjanbanik75093 жыл бұрын
@6:20 Why can't we use LabelEncoder instead of panda's dummy variables?
@abhinavkale46323 жыл бұрын
both can be used, it is just that he is more used to one hot encoder.. that is the same pd.get_dummies(" " ). Otherwise, the results will be the same for both.
@abhinavkale46323 жыл бұрын
pd.get_dummies(df,columns=['sex']) could have just done this.. no need to perform concati. @6:45
@fahadabdullah5102 жыл бұрын
How P(diamond/queen) is 1/4 Can somebody explain to me?
@tagoreji21433 жыл бұрын
SIR ,HOW TO IMPROVE ITS ACCURACY?
@YYZ-e1w4 жыл бұрын
isn't it female and male column 'highly related'?
@tanyabhalla50834 жыл бұрын
Input contains NaN, infinity or a value too large for dtype('float64'). - Can you help with the errror?
@nitishkeshri23783 жыл бұрын
use fillna() method to fill that "NAN" value as shown in video
@TheEngineerpodcast Жыл бұрын
can't the sex column be simplified by LabelEncoding??
@harmainiwilliam55393 жыл бұрын
We can't able to download ur code... It's coming invalid
@codebasics3 жыл бұрын
I have checked all URL's working perfectly. Please check URL in description.
@rinsyarifuddin86964 жыл бұрын
Please help me, i got this error message "could not convert string to float : 'male' " someone can explain me why it's happen to me?
@vatsal_gamit4 жыл бұрын
Use sklearn encoding
@RishabhSingh-bh7fu4 жыл бұрын
I am getting file not found error as I import data set using the same code
@nmana97594 жыл бұрын
if you're using IDE you should import the file to the workspace you're working in
@rudrarajput47645 жыл бұрын
Boss, can you please make a lecture on reinforcement learning and also one lecture on Q learning??