yay! This is actually the same method that I used in the original file, but I left out the steps to solving the integral at that point since I felt it would go on for too long and is a semi-trivial integral. Thanks for being the reader in the imaginary "this is left as an exercise to the reader".
@Rundas694205 жыл бұрын
If you made the same noises on the plane as you did at 4:57, the person sitting next to you had every reason to think that you are somewhat crazy :D.
@drpeyam5 жыл бұрын
Hahahahaha
@azmath20595 жыл бұрын
Amazing integral. It was a pleasure to watch as you navigated through all the steps to a such an elegant solution.
@66127705 жыл бұрын
I got really all choked-up watching you do this one. So had to go to the medicine cabinet and have some COTH syrup...
@dgrandlapinblanc5 жыл бұрын
Alleluia ! Thanks. Good week-end Dr Peyam's.
@MurshidIslam2 жыл бұрын
4:55 Howard Anton's calculus book says that "csch" is pronounced "coseech".
@GreenMeansGOF5 жыл бұрын
Does partial fractions work for 1/(u^2-t^2)? Also, the +C from the arctanh derivation, is it 0?
@weerman445 жыл бұрын
Yes! I managed to solve it using PFD
@Whateverbro245 жыл бұрын
14:29 why didnt you integrate the C? please reply
@faresberarma33495 жыл бұрын
Hello Dr Peyam, I found an easy way to do this integral using the same method but by introducing the parameter t only in the numerator I(t)=integral from 0 to inf ln((exp(x)+t)/(exp(x)-1))dx, I=I(1) and I(-1)=0 dI/dt=intgral from 0 to inf dx/(exp(x)+t) after substitution and simplification we obtain dI/dt=ln(1+t)/t dI=(ln(1+t))/t dt we integrate both sides from -1 to 1 Finally we obtain the same result pi^2/4 but more quickly Best Regards
@drpeyam5 жыл бұрын
That’s the way I did it in another video
@faresberarma33495 жыл бұрын
@@drpeyam thank you for reply, can you send me the link of this vidéo ? Thanks a lot
@Uni-Coder5 жыл бұрын
Please do something about probability theory. Mathematical statistics. Data science and machine learning. Artificial Intelligence.
@drpeyam5 жыл бұрын
I literally know nothing about those subjects
@Uni-Coder5 жыл бұрын
@@drpeyam Even the simple addition of two continuous random variables is convolution, what comes down to integrating. I know you love integrals :) It would be interesting how we can add, multiply and so on random variables. Sometimes we get gamma functions and very hard integrals :)
@Gold1618035 жыл бұрын
You should make a full series of "Integrals, the Swag Way"
@drpeyam5 жыл бұрын
There’s an Integral playlist with lots of swag integrals, haha
@brianlamptey48235 жыл бұрын
2:17 Shouldn't you multiply the derivatives by e^x?
@TimesOfSilence5 жыл бұрын
No, because e^x is just a constant. Be careful, you derive with respect to t here, and not to x ;) And the derivative of t is simply 1, so you can leave it out :)
@brianlamptey48235 жыл бұрын
@@TimesOfSilence Oh I thought t was the constant. Just realized the function was with respect to t.
@weerman445 жыл бұрын
Yeaahhh managed to solve this one on my own! :D
@terminate58885 жыл бұрын
At 2:07 you forgot to use the chain rule: ln(e^x+t)- ln(e^x-t) dy/dx = e^x/(e^x+t) -e^x/(e^x-t) so your integral should be: integral (e^x(1/(e^x+t) -1/(e^x-t))) however I do not understand why you did this as this will just give you back the function that you wanted to integrate. couldn't of you instead set up this integral: integral (ln(e^x+1) -ln(e^x-1))dx and knowing that the integral of lnx=xlnx -x +c then the function can be obtained: (e^x+t)ln(e^x+t) -(e^x+t)- (e^x-t)ln(e^x-t) -(e^x-t) +C (e^x+t)ln(e^x+t)-(e^x-t)ln(e^x-t) -2e^x +C I think I may of misunderstood your method, can you elaborate? thanks.
@2070user4 жыл бұрын
You don't have to multiply by the derivative of (eˣ+t) and etc because it is deriving with respect to t, not with respect with x.
@dp1212735 жыл бұрын
It's funny why the 'h' for 'hyperbolic' has found its way to the end of the (abbreviated) function. It would be more normal to write hsin, hcos, htan, hcsc, hsec, hcot and from that maybe to pronounce it hysine, hycos(ine), hytan(gens), hycosec(ans), hysec(ans), hycot(an(gens)).
@drpeyam5 жыл бұрын
Cosh sounds cooler though, hahaha
@dp1212735 жыл бұрын
@@drpeyam: It's totally nasty too, urban language wise, haha :D
@dp1212735 жыл бұрын
@@no-one-in-particular: Good explanation .. Thanks!
@azmath20595 жыл бұрын
my old maths professor pronounced sinh as "shine", cosh as "cosh", tanh as "than", sech as "sheck", cosech as "cosheck", and coth as "coth"
@bandamkaromi5 жыл бұрын
brilliant solution.😃😃
@D-Bar5 жыл бұрын
That voice crack in the 3 2 1 intro though 😅
@chengchen90325 жыл бұрын
you are wearing the same shirt that you wore in yesterday's math 121A class!
@drpeyam5 жыл бұрын
Yep :)
@leonardromano14915 жыл бұрын
Is this a female saying 'ge' at 1:40?
@jameswilson82705 жыл бұрын
I enjoyed it :)
@newtonnewtonnewton15875 жыл бұрын
Nice video D peyam thanks a lot السلام عليكم
@gamedepths47925 жыл бұрын
Now find a facebook or instagram integral!
@drpeyam5 жыл бұрын
Hahahaha
@blackpenredpen5 жыл бұрын
Hahahha
@skeletonrowdie17685 жыл бұрын
myspace integral, it converges to 0 if you get what i mean
@drpeyam5 жыл бұрын
Skeleton Rowdie Burnnnnnn 😂😂😂
@BRORIGIN5 жыл бұрын
The CSCH republic
@drpeyam5 жыл бұрын
Hahahahaha
@bandamkaromi5 жыл бұрын
hahaha. I don't know what "csch^2 x" and "coth^-1 x" are pronounced. lol. :D
@shandyverdyo76885 жыл бұрын
Ok
@adityavij6675 жыл бұрын
I request you to try some jee adv questions if possible 😁
@pbj41844 жыл бұрын
Couldn't you just u-sub u=t*sec(alpha)? You don't have to use hyperbolic trig sub then...... unless you're Dr. Peyam 😎😛
@ricardoalexreyvenegas64545 жыл бұрын
Doctor con mucho respeto y cariño sus videos son extraordinarios, pero la verdad que no se ve muy bien. Le aconsejo mejorar la visión de nosotros para así poder apreciar de forma más clara sus desarrollos. No se ve nada de bien. Saludos cordiales.💪💪
@drpeyam5 жыл бұрын
Yo sé
@ricardoalexreyvenegas64545 жыл бұрын
@@drpeyam sería genial ver sus videos desde una óptica distinta. Gracias y saludos.