f inverse is continuous

  Рет қаралды 6,996

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 30
@RC32Smiths01
@RC32Smiths01 3 жыл бұрын
Very interesting as always man!
@yooooooooumu2838
@yooooooooumu2838 3 жыл бұрын
Very helpful! Thx!
@MrCigarro50
@MrCigarro50 3 жыл бұрын
Le quedo muy agradecido por este y todos los videos que Ud. nos ha brindado.
@drpeyam
@drpeyam 3 жыл бұрын
¡De nada! El gusto es el mío
@DynamicMateTV
@DynamicMateTV 3 жыл бұрын
Rigorous proofs are very satisfying :))
@andresvasquez5411
@andresvasquez5411 3 жыл бұрын
If we have this theorem, that if a function is continuous then the inverse is also continous, can we say that this kind of functions are homeomorphisms?
@dylank6191
@dylank6191 3 жыл бұрын
In metrical spaces, yes, every bijective and continuous function is a homeomorphism. In more general topical spaces, not necessarily.
@shahinjahanlu2199
@shahinjahanlu2199 3 жыл бұрын
Thx dr.peyam
@honghong324nt5
@honghong324nt5 4 жыл бұрын
At 7:00 12:00, how would you create a ball in the interval if it was an endpoint?
@drpeyam
@drpeyam 4 жыл бұрын
I think in this case the ball would be a half-interval, basically a ball intersected with an interval
@honghong324nt5
@honghong324nt5 4 жыл бұрын
@@drpeyam Interesting. Thank you!
@madhavpr
@madhavpr 2 жыл бұрын
Awesome video as always. Just a quick technical question about the choice of epsilon. I understand that epsilon is "small", so we've assumed that it's less than 'r' so that our epsilon ball stays inside the interval I. However, the definition of continuity requires epsilon to be any arbitrary positive number. What if my choice of epsilon was much much much bigger than r ? Example, r = 0.001, but epsilon = 1000. In this case, the epsilon ball centered at g(x_0) would contain the corresponding r-ball. What should we do then? Also, how do we rigorously justify the claim that it's okay to assume epsilon < r ?
@drpeyam
@drpeyam 2 жыл бұрын
min(r,whatever you found)
@MrRyanroberson1
@MrRyanroberson1 3 жыл бұрын
i had a thought when i saw this video and it goes like this: consider the function f(v)->w; v and w in R^2 which is continuous everywhere. Let g(v) be defined as Bf(Av), for some 2x2 matrices A, B. If there exist matrices A, B such that g(x, y) -> (p(x), q(y)), what do we know about f?
@JharkhandMathsZone
@JharkhandMathsZone 2 жыл бұрын
Very interesting please tell me how to achieve America through maths
@josebeleno1213
@josebeleno1213 4 жыл бұрын
I tried to do the proof. I had the same ideas!!!
@NonTwinBrothers
@NonTwinBrothers 3 жыл бұрын
Lol the new thumbnail
@the_nuwarrior
@the_nuwarrior 3 жыл бұрын
very good content
@dgrandlapinblanc
@dgrandlapinblanc 2 жыл бұрын
Ok. Thank you very much. I figure out the demonstration but for me at 10 minutes there is an element who doesn't work because you said in definitive that g(x0)< or = to g(x) => x0< or = to x and you use the fact that f is increasing for demonstrate that x0 can't be an end point. Ok. But for me it's the fact that f is STRICTLY increasing otherwise it doesn't work. For beginning even using the increasing you must say g(x0) x0< or = to x by definition. Moreover when you suppose g(x0) at the end point of I for demonstrate by contradiction that x0 isn't an end point of J you must use the strictly increasing of f (i.e g(x0) x0
@Smoothcurveup52
@Smoothcurveup52 Жыл бұрын
Happy mathematics day sir
@thedoublehelix5661
@thedoublehelix5661 3 жыл бұрын
Here's my attempt: we know f:I->R is 1 to 1 and continuous, so it's either increasing or decreasing (wlog assume increasing). An increasing and continuous function takes open intervals to open intervals. It maps intervals to intervals because it's continuous (intermediate value theorem). Now lets show it preserves openesses of intervals. Assume there was some open interval whose image is not open. Since we know the image must be an interval that is not open, the interval contains one of it's endpoints (wlog assume it's the rightmost endpoint and thus the maximum). Because f is increasing, the preimage of a maximum is another maximum. But the original set is an open interval, so it doesn't contain a maximum element. This is a contradiction which means f preserves openess. Now it's easy to see that the inverse of f is continuous by the topological characterization of continuity.
@jirihavel2193
@jirihavel2193 2 жыл бұрын
thanks this was very helpful for me
@MathAdam
@MathAdam 3 жыл бұрын
OK, did you change the thumbnail... or do I need to go back to bed?
@drpeyam
@drpeyam 3 жыл бұрын
I did change it 😂
@chessematics
@chessematics 3 жыл бұрын
When you realize that the thumbnail also got it's inverse function (if only you've seen the very first thumbnail). Edit: and when you realize that Dr. Peyam is always active and gives ♥️ to your comment instantly.
@drpeyam
@drpeyam 3 жыл бұрын
Haha, how meta!!!
@chessematics
@chessematics 3 жыл бұрын
@@drpeyam you took the ♥️ away instantly as well
@drpeyam
@drpeyam 3 жыл бұрын
Oh no, I accidentally clicked ❤️ twice
The Borsuk Ulam Theorem
11:06
Dr Peyam
Рет қаралды 5 М.
What is a continuous extension?
29:36
Dr Peyam
Рет қаралды 7 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
Their Boat Engine Fell Off
0:13
Newsflare
Рет қаралды 15 МЛН
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
a neat fact about uniform continuity
9:57
Dr Peyam
Рет қаралды 4,2 М.
Can you prove it? The Extreme Value Theorem
18:11
Dr Peyam
Рет қаралды 14 М.
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 14 МЛН
Uniform Continuity (Example 4): Not Uniformly Continuous
14:47
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 284 М.
Continuous implies Bounded
8:11
Dr Peyam
Рет қаралды 13 М.
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 960 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
How a Blind Mathematician Became the World's Greatest
16:31
Newsthink
Рет қаралды 142 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН