[Eng Sub] Angle Between Functions? | Orthogonality

  Рет қаралды 25,764

Zundamon's Theorem (jp)

Zundamon's Theorem (jp)

Күн бұрын

Пікірлер: 94
@山形祐介-e5l
@山形祐介-e5l 4 ай бұрын
「直交」という表現は本来の漢字の意味から「計量線形空間内で定義される内積の値が0」という意味にかなり拡張されていますね。
@i_tatte
@i_tatte 4 ай бұрын
「互いに素」の記号として当然のように⊥が濫用されてたりしますよねー、初めて見たのが気持ちを理解する前だったのでビックリした記憶があります
@bb-lz6eo
@bb-lz6eo 4 ай бұрын
初めてフーリエ変換について触れたとき、三角関数の直交性について面白さは感じつつも深掘りはしなかったからこの解説を聞いてとても感動している……。この投稿者さんの動画は他の解説と違って質の高さを感じるし毎回取り上げるテーマが面白くてすごい素敵。
@Ny0s
@Ny0s 4 ай бұрын
This might be one of the best math channels on youtube right now. Thank you so much for the english subtitles!
@天才の証明
@天才の証明 4 ай бұрын
大学の教科書だと、これがメッチャあっさり導入されるよな 痒い所に手が届いて面白いや
@proximitygaming8253
@proximitygaming8253 4 ай бұрын
I learned about this in Linear Algebra, but this pleasantly extends it with more theory. Nice video!
@average334
@average334 4 ай бұрын
フーリエ変換よく使ってるので解説助かります! 画像圧縮とか、スペクトラムアナライザ(音楽とかで周波数を表示するアレ)とかに使われてて、線形代数の応用力の高さを感じさせられますよね〜
@2F5L5XG
@2F5L5XG 4 ай бұрын
It's so awesome to see topics being discussed in class being discussed in an unexpected topic such as "Angles between functions" Such as the Fourier series and Legendre's polynomials! I've only ever heard about Legendre's polynomials from quantum mechanics and the Hydrogen Atom but didn't expect them to see them here as-well. Another amazing video! Keep up the good work! 😁
@Jijikuso
@Jijikuso 4 ай бұрын
俺物理学科だけどやっぱり数学ってあるものを別な視点から見てそれをどんどん発展させる時が一番楽しい。いつもこういう動画ありがとう。
@ANONAAAAAAAAA
@ANONAAAAAAAAA 4 ай бұрын
線形代数「またオレ何かやっちゃいました?」
@pablozaid6078
@pablozaid6078 4 ай бұрын
日本語を勉強しているコンピューターサイエンス専攻でこういう動画めっちゃ便利ね
@山崎洋一-j8c
@山崎洋一-j8c 4 ай бұрын
内積を公理で定義しておけば、普通のベクトルの場合も関数の積分の場合も、公理を満たしていることをチェックするだけで、内積に関する必要な性質(内積から定義した「長さ」がちゃんと長さの性質である三角不等式を満たすこととか、シュワルツの不等式とか)がすべて自動的に分かる。 なぜなら、それらの性質は、内積の具体的定義によらずに内積の公理だけから証明できるから。
@りりいる
@りりいる 4 ай бұрын
線型代数「内積が定義できるヤツ全員友達」
@天使m
@天使m 4 ай бұрын
15:30 ~ 公式を暗記していたフーリエ展開が、関数の内積を知って「もとの関数をベクトルと考えて 基底関数(cos、sin)の成分を求めていたんだ」と絵でわかった時、感動したのをおぼえています
@molecular_science-vx7qh
@molecular_science-vx7qh 4 ай бұрын
こういうお話を量子力学の講義の前に受けておきたかった。
@zunda-theorem
@zunda-theorem 4 ай бұрын
そう言ってもらえるとうれしいです。 いつもご支援ありがとうございます!
@暇神-t7s
@暇神-t7s 4 ай бұрын
大学化学で「2つの波動関数の積を全区間で積分して0なら、2つの波動関数は直交している」って習って、よくわかってなかったけど、この動画のあかげで分かった。ありがとう。
@steve2817
@steve2817 4 ай бұрын
Expressing fourier series with inner product was definitely way more intuitive than just writing coefficient with integrals. Thanks for providing great videos!!!
@user-ll7ff5ep7m
@user-ll7ff5ep7m 4 ай бұрын
どうやってこういう面白いトピックに辿り着けるのか、自分で学ぶときにどうやっているのか、知りたすぎる。明らかにクオリティが高いので,動画作成の手法も待っています.
@sagarroy8679
@sagarroy8679 4 ай бұрын
Very cool to see Grahm Schmidt applies to functions! Never thought about that at all. Being able to define an inner product between two things really gives you a lot of tools to analyze them. Love linear algebra!
@ぐうたらぼっち-e7t
@ぐうたらぼっち-e7t 4 ай бұрын
普通に「直交」って"orthogonal"の事だと思って生きてたら"Cartesian"なんてものが出てきて泣いた大学数学の思ひ出
@owata1942
@owata1942 4 ай бұрын
ある意味無限次元ベクトルの内積と考えられるよね
@summonsboard1999
@summonsboard1999 4 ай бұрын
機械力学で運動方程式を正規化する際に直交の関係を使ってたけどこういうことだったんだ…
@STIRJr
@STIRJr 4 ай бұрын
ベクトルの内積を学んだ時、ベクトルの内積は有限項の数列同士の積和になってるけど、無限項のべき関数の積和(=べき関数の積の積分)でもイケそうだなぁと思ったけど、できるんですね。 フーリエ級数は、正弦関数と余弦関数の位相が90度ズレてて、関数が直交してるイメージありました。直交した波動成分に分解してる感覚
@こーここ-q8t
@こーここ-q8t 4 ай бұрын
今までふわっと使っていたルジャンドル陪関数がシュミットの直交化から導出できるのはよく考えると当たり前だけど勉強になった
@ykonstant
@ykonstant 4 ай бұрын
The way you are pacing the conversation and the explanation is excellent; you have a real talent for presenting mathematics! Bravo!
@user-bp6mz2qw3j
@user-bp6mz2qw3j 3 ай бұрын
高校中退生です!後半意味わからん、ムズすぎ!だけど、自分から新しく数学を開拓していく感じはええよなぁ。ありがとう!
@ひぐねこ-w2w
@ひぐねこ-w2w 4 ай бұрын
振動モードを理解するのに必須の知識ですな。
@afrolichesmain777
@afrolichesmain777 4 ай бұрын
I remember seeing 13:02 during my partial differential equations class and completely disregarding it. Now looking at it, Im upset at myself for not seeing back then, like its so obvious! Great video as always!
@purim_sakamoto
@purim_sakamoto 4 ай бұрын
ん〜〜〜何かが拡張していくのは気持ちいいね プールで浮かんでるような気持ち良さ
@atrophysicist
@atrophysicist 4 ай бұрын
Your videos never disappoint!! They always start with a seemingly innocent question but dive deeper and deeper!
@apppples
@apppples 4 ай бұрын
i learned this in real analysis. also something about derivatives being linear maps, which when dealing with functions with finite terms were matrices maybe? i don't remember... its been so long. great video though!!
@df-163
@df-163 4 ай бұрын
Great video, orthogonal polynomials are some of my favourites objects in maths (as a numerical analyst). Some things i want to say are 1: Some additional remarkable properties of Legendre polynomials involve: -three term recursion relations which tell us that (in the case of legendre) (n+1)Pn+1(x) = (2n+1)xP_n(x) - nP_n-1(x) This extremely useful in computing such polynomials fast and accurately. -gaussian quadrature. The roots of legendre polynomials can be used to numerically integrate functions very quickly and accurately - expressing functions: using the orthogonality relation, it is easy to express functions on computers using orthogonal polynomials. Then, you can solve many differential equations easily (spectral method) 2: In fact, if you change the inner product to a general one of the form (f,g) = ∫f(x)g(x)w(x)dx where w is a weight function (that satisfies certain integrability conditions...) You can get other sequences of orthogonal polynomials Look up Chebyshev polynomials of 1st and 2nd kind, which are heavily tied with fourier series Laguerre polynomials, on half real line and Hermite polynomials, on whole real line, which turns up in probability theory due to having the normal distribution as the weight function. There is nothing special about Legendre polynomials. There are analogous properties for all other orthogonal polynomials :D
@weegee7924
@weegee7924 4 ай бұрын
Regarding the weight function, lots of differential equations come equipped with a natural choice of weight function, so solutions to these equations can be constructed by constructing an orthonormal basis of functions and then superposing them! All part of a class of problems called Sturm-Liouville problems, which encompass many physical differential equations, such as Poisson's equation, the Diffusion equation, and the wave equation. Bessel functions and spherical harmonics fall out naturally when solving these kinds of problems in specific coordinate systems. They're quite tame and well-behaved once you realize they're just basis functions!
@umapessoaaleatoria
@umapessoaaleatoria 4 ай бұрын
My favorite math channel
@betelgeusecardioid8575
@betelgeusecardioid8575 4 ай бұрын
ルジャンドル多項式ここでも出てくるんや 電磁気学で学習した事と繋がって嬉しい
@user-nw4if2uh4x
@user-nw4if2uh4x 3 ай бұрын
ルジャンドル多項式ってなんかやったなぁ。でも思わぬところから出てきて余計に混乱しとる。貴様何故…。
@takashike
@takashike 4 ай бұрын
関数の直交性といえば、三角関数を利用したフーリエ変換かな。フーリエ変換は神ツールだと思う。
@acborgia1344
@acborgia1344 4 ай бұрын
Great video, I learned a lot!
@undeathbysnipe2986
@undeathbysnipe2986 4 ай бұрын
very clear and concise introduction to this mathematical concept! i only minored in mathematics, so i didn't need to go far too into linear algebra, i never even had to do this in all of my physics classes!
@tambaren
@tambaren 4 ай бұрын
Zernike多項式というもので2次元平面の直交を扱ってるが 理解が深まった
@ほぼ理系
@ほぼ理系 4 ай бұрын
このチャンネルが1番しっかりしてて好き(by数学専攻1年)
@eggyolk6735
@eggyolk6735 4 ай бұрын
I remember doing the Gram-Schmidt process when doing linear algebra/vector spaces and seeing it here made everything click so beautifully!
@stripe_tanuki
@stripe_tanuki 4 ай бұрын
直行の定義に合う関数の組を眺め続けると、もしかすると夢の中でそれらが直交しているのが見えるかもですね。
@user-plr
@user-plr 4 ай бұрын
As expected, it is the inner product of the continuous function space C[a,b]. Functional analysis on KZbin is really surprising!
@weegee7924
@weegee7924 4 ай бұрын
With the last video and this video covering techniques used in Quantum Mechanics, I hope we get to see Zundamon-sensei's introduction to Quantum Mechanics!
@荻野憲一-p7o
@荻野憲一-p7o 4 ай бұрын
幾何ベクトルの「なす角」も、基本これと同じ定義なんだがな。 図面を使って「角度」が定義できると信じ込んでいる輩が多すぎる。
@c9807
@c9807 4 ай бұрын
量子力学だと関数の直交化はとてもなじみが深い
@wsgyall623
@wsgyall623 4 ай бұрын
great video!
@a52productions
@a52productions 4 ай бұрын
Oh! That's where the Legendre polynomials are from... they pop up all the time in physics, but my lecturers always brushed over them and I was left mystified by their definition. When you try to construct them manually like this, they become so simple -- it's just what you get when you try to turn a Taylor series basis into an orthonormal one!
@AnnXYZ666
@AnnXYZ666 4 ай бұрын
I learned the concept in linear algebra, but they never expanded it that it can be expanded to Fourier series. This is very interesting
@angeldude101
@angeldude101 4 ай бұрын
If it adds like a vector and it scales like a vector, it's a vector. Functions add like vectors and scale like vectors, so they're vectors. (They're also an inner product space, which technically isn't a requirement to be a vector, but it's a nice bonus and important for orthogonality.)
@holery9215
@holery9215 4 ай бұрын
At first, i consider the video just explain about inner product (dot product). Because the thumbnail is asking about angle between two vectors. So, i guess that is just rearranging the equation of dot product or cosine rule. Unfortunately, my guesses are wrong. You make me very pleasant for this explanation. I learned a new thing, like assuming function as exponential series and manipulated the equation where has a different expectations. Thank you🙌 Ps: Please apologize for my bad english
@kappasphere
@kappasphere 4 ай бұрын
From the thumbnail, I thought the question was how to find the angle between two function graphs, so I solved that problem before watching the video 😅 So anyways, here is my solution for finding the angle between two function graphs, using complex numbers: if z=ae^iθ and w=be^iγ, then z/w = a/b e^i(θ-γ) gives the angle between z and w. To get a complex number that has an angle that represents the slope of a function f at (x, f(x)), you just use the point (1 + i f'(x)). Use this to get the angle between f and g: The angle between (1 + i f'(x)) and (1 + i g'(x)) is the angle of (1 + i f'(x))/(1 + i g'(x)) = (1 + i f'(x))/(1 + i g'(x)) (1 - i g'(x))/(1 - i g'(x)) = (1 + i f'(x))(1 - i g'(x)) / (1 + g'(x)²) = (1 + f'(x)g'(x) + i (f'(x) - g'(x))) / (1 + g'(x)²) the angle of this is arctan( (f'(x) - g'(x)) / (1 + f'(x)g'(x)) ) Let's try to find two functions that are always orthogonal. For these, 1+f'(x)g'(x)=0 for all x, so g'(x)=-1/f'(x). So g(x) = C - int 1/f'(x) dx. For example, with f(x)=ln(x), f'(x)=1/x, and g(x)=C - int x dx = C - x²/2. But after watching the video, orthogonality of the functions as vectors is a lot more interesting than the angle between the graphs.
@tacos_0916
@tacos_0916 4 ай бұрын
毎度毎度シチュエーションが謎すぎて笑う
@molecular_science-vx7qh
@molecular_science-vx7qh 4 ай бұрын
壮大な世界背景があるものと妄想しています
@あうら-g2j
@あうら-g2j 4 ай бұрын
たぶん、ホビー漫画の話の規模がエスカレートして地球の危機にホビーで対抗するやつの数学バージョン。
@nyanrock26
@nyanrock26 3 ай бұрын
量子力学の講義やら課題でこういう計算を大量にやらされた記憶がある。何がわからないのかわからないままだったが、数学的な意味が分かってなかったのかも。
@loytoyinn8639
@loytoyinn8639 4 ай бұрын
That length operator for functions at 2:32 is super close to the definition of the Root Mean Square (RMS). The only difference is you divide by 1/(b-a) to attain the average of the squared function along the interval [a,b]. It has very important applications in AC power systems, especially in delivering a certain consistent voltage to homes (for America, this is usually 240/120V RMS at 60 Hz). It equates AC Power Delivery to a device to some DC Power Delivery in a sense. This is done because AC power has this weird phenomenon where certain devices (equivalent to either capacitors or inductors), will have slight periodic behavior (passing charge/energy back and forth between each other and-or holding extra energy for some period of time instead of immediately dissipating it like a resistive load would). So engineers and physicists wanted a way to ignore this effect as this “reactive” power wouldn’t actually provide any power towards the device, so they remove it out of the equation for AC power systems using this cool little RMS thing.
@tomorrow-s_bag
@tomorrow-s_bag 4 ай бұрын
2:17 RMSみたいだなあ。 (音いじりが趣味のド文系並感)
@gonzaloabelcastro1077
@gonzaloabelcastro1077 4 ай бұрын
💕💕👏👏👏Super intereante el tema🤘 me encanto como una simple analogia genera mas matematematicas lo cual les llevo fourier🙌💕👍
@plantnt489
@plantnt489 4 ай бұрын
I thought calculus was hard until I found about linear algebra
@SilverLining1
@SilverLining1 4 ай бұрын
It should have been stated that by definition the norm of a vector and inner product of vectors have to satisfy certain properties. This is especially important since at 12:12 one of these properties, linearity, is used, despite not having checked its validity for our definition. That said, it follows immediately from the linearity of integrals, but Metan rarely glosses over these details!
@ccxxii7816
@ccxxii7816 4 ай бұрын
関数をどこぞのサラダおろしで細切れにして、無限個(実数の濃度)の値を持つベクトルとして扱ってるって解釈で合ってる?
@天才の証明
@天才の証明 4 ай бұрын
サラダおろしが何を指すか分からんが基本その認識で良いと思う 解析や量子力学やるんだったら避けては通れない道かな(解析は詳しくないなら予想でしかないが) しかも、大体の教科書はこれを「知ってる前提」でいきなり使うからね
@ccxxii7816
@ccxxii7816 4 ай бұрын
@@天才の証明 区分求積法(にんじんしりしり)、元は区分求積法の動画だけど積分に対してだいたいそのイメージが湧くようになった。
@Zitrussaft
@Zitrussaft 3 ай бұрын
Oh yes bois! Another great one!~
@jalmar40298
@jalmar40298 4 ай бұрын
ルジャンドルの多項式は正規直交系だけど完全ではないのかな
@MikuHatsune-np4dj
@MikuHatsune-np4dj 4 ай бұрын
sinとcosを掛けると0になるやつですね
@katsuakinaito1218
@katsuakinaito1218 4 ай бұрын
積分区画に意味付けはできますか? 内積を定義できる範囲で、考えたい関数空間にあわせて、いい感じに積分区画を定義するといった感じのものでしょうか?
@天才の証明
@天才の証明 4 ай бұрын
(-∞, +∞)の範囲になるが、量子力学やれば分かるよ
@katsuakinaito1218
@katsuakinaito1218 4 ай бұрын
@@天才の証明 量子力学では、例えば周期境界条件を考えたいときは-L〜Lとしたり、開放教会条件にしたい場合はL→∞です。空間次元が上がったり、対称性を考慮することで、積分区画を変えたりします。そう言う話は、あくまで物理的に考えたい積分区画として定義できます。 ここで質問している内容は、純粋に数学的に考えた場合に、積分区画に要請がかかっているかと言うことです。
@ほげふがーの山小屋
@ほげふがーの山小屋 4 ай бұрын
この動画は計量ベクトル空間(R∞)での関数の内積の定義についての説明 で合ってますよね?(🤔ちょっと自信ないです。
@jalmar40298
@jalmar40298 4 ай бұрын
R∞がなんなのか分からんけどたぶん違う そこらへんは積分可能性とかの煩雑な説明が必要だから省いていると思われる
@kao7s
@kao7s 4 ай бұрын
大学の教科書全部この人に書いてほしいんだが…
@天才の証明
@天才の証明 4 ай бұрын
線形代数はこの人に任せたいな
@バックミンスターフラーレン
@バックミンスターフラーレン 4 ай бұрын
中の人が教科書書いたことがある教授さんだったりする可能性が微粒子レベルで存在している……………?
@天才の証明
@天才の証明 4 ай бұрын
​@@バックミンスターフラーレン 本当にそうだとしたら、教授も好きで教科書あんな雑に書いてる訳じゃないんだな
@あうら-g2j
@あうら-g2j 4 ай бұрын
@@天才の証明大学教授が本を書くのは、「本くらい書かないと碌な収入を得られないから」だという噂が……。 産学連携とかメディア出演とかで稼げる分野じゃなければ、本書いて『教科書』という体で学生に売りつけるくらいしか専門性を活かした副業がありませんから。
@jackolantern6201
@jackolantern6201 4 ай бұрын
The length of a function resembles the RMS value of a function
@yukihironishikawa1197
@yukihironishikawa1197 4 ай бұрын
おしい。関数の「内積」は、対象とする関数の都合に合わせて調整されるので、一意に議論できるものじゃないことに言及してほしい。多項式の例とフーリエ級数では責任範囲が違ってるしね。関数2つから数値1個が得られる計算全てが内積に使えるよ。
@willy8285
@willy8285 4 ай бұрын
Omg this is awesome!!!!!!!!
@てち-k2y
@てち-k2y 4 ай бұрын
すごく丁寧な動画だけど、構成が観づらく感じてしまうのは私だけでしょうか。 ℝ^nのユークリッド内積におけるシュミットの直交化を示してから、一般の内積空間の話に展開した方がスッキリすると思う。 あと、何を目標にして話が進んでいるのかが見えづらく、展開を追うのに少し苦労する。 ただ、とても分かりやすく楽しい動画だから、これをきっかけに数学好きな人が増えると好いなと思います。
@straightforwardchad
@straightforwardchad 4 ай бұрын
either way orthogonality means 90 degree, right?
@wswsan
@wswsan 4 ай бұрын
単に関数のグラフを見るとそんな感じなさそうだけど, それとはまた別?
@gabygamerhd
@gabygamerhd 4 ай бұрын
parabéns, voçê acaba de encontrar o comentário em português que tanto procurava! faz o L.
@IamACrafter
@IamACrafter 4 ай бұрын
so peak
@チューリングマシン
@チューリングマシン 4 ай бұрын
エアプで申し訳ないけどこういう内容って数学科で学ぶの?
@臼-v7q
@臼-v7q 4 ай бұрын
そんな学科入らなくても、どの分野であれ工学で勉強できる
@チューリングマシン
@チューリングマシン 4 ай бұрын
@@臼-v7q 丁寧にありがとうございます!
@天才の証明
@天才の証明 4 ай бұрын
なんなら数学科の方が見る機会少ない
@チューリングマシン
@チューリングマシン 4 ай бұрын
そうなんですか!? 丁寧に教えてくださりありがとうございます
@aks8403
@aks8403 4 ай бұрын
Slight error in translation at 5:03 , 0!=1 (this is supposed to be a joke)
@huailiulin
@huailiulin 4 ай бұрын
2h
[Eng Sub] What is Distance in Infinite Dimensions?
11:46
ずんだもんの定理【数学解説】
Рет қаралды 18 М.
[Eng Sub] Basel Problem: What is Behind the Famous Proof
19:24
ずんだもんの定理【数学解説】
Рет қаралды 34 М.
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 3,2 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 60 МЛН
Thank you Santa
00:13
Nadir Show
Рет қаралды 35 МЛН
[Eng Sub] Calculations in Another World | Tropical Geometry
18:46
ずんだもんの定理【数学解説】
Рет қаралды 44 М.
[Eng Sub] Beyond the Forbidden Division
15:00
ずんだもんの定理【数学解説】
Рет қаралды 12 М.
フーリエ変換を座標変換として理解する
24:46
kamenoseiji
Рет қаралды 53 М.
[Eng Sub] √(-1)-th Derivative | Fractional Calculus
14:22
ずんだもんの定理【数学解説】
Рет қаралды 116 М.
[Eng Sub] d/dx is an Infinite Matrix
13:14
ずんだもんの定理【数学解説】
Рет қаралды 76 М.
Unsolvable System of Equations? | Dual Numbers
14:03
Zundamon's Theorem
Рет қаралды 85 М.
[Eng Sub] Formal Derivative: Differentiating Something That Diverges to Infinity
16:48
ずんだもんの定理【数学解説】
Рет қаралды 24 М.
[Eng Sub] An Introduction to Dual Spaces | The 'Underworlds' of Mathematics
12:21
ずんだもんの定理【数学解説】
Рет қаралды 13 М.
[Eng Sub] Indices to Exponents | Umbral Calculus
12:04
ずんだもんの定理【数学解説】
Рет қаралды 13 М.
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 3,2 МЛН