Euler's Formula V - E + F = 2 | Proof

  Рет қаралды 57,276

Think Twice

Think Twice

Күн бұрын

Пікірлер: 190
@JorgetePanete
@JorgetePanete 4 жыл бұрын
4:40 Consider a spherical cow
@mathemaniac
@mathemaniac 4 жыл бұрын
Woah! This proof is really unexpected! I have only seen the proof by induction, but this is actually quite a creative alternative proof.
@arikwolf3777
@arikwolf3777 4 жыл бұрын
Also why V - E + F = 2 doesn't always work for concave polyhedrons. The three-section arch in the concave example works because it can be morph into a convex one an therefore be mapped to a sphere. But a N-section ring, (a torus,) cannot.
@Poklaz1
@Poklaz1 4 жыл бұрын
@@arikwolf3777 maybe works only for starry polyhedra, i.e. which can be mapped on a sphere
@ThighFish
@ThighFish Жыл бұрын
How even would this be possible to prove inductively?
@sourav_kundu
@sourav_kundu 4 жыл бұрын
Here is an alternate proof. Imagine the polyhedron as a planet hanging in space. Imagine that there is a hollow in every face, and every vertex is a mountain. Imagine that every hollow is filled with water. Now imagine it starts to rain on the planet, and the water level starts to rise. One by one the water crosses the edges, until the planet is one entire ocean with V islands sticking up. Whenever the water crosses an edge, there are two possibilities. Either: (a) two bodies of water have joined into one (number of lakes decreases by one, number of landmasses stays the same); or (b) a body of water has joined up with itself, encircling a new island (number of lakes stays the same, number of landmasses increases by one). Initially, there are F lakes and 1 landmass. At the end of the flooding, there is 1 lake and V landmasses. Therefore, there must have been (F-1) edge crossings of type (a), and (V - 1) crossings of type (b). Every edge got crossed exactly once. So E = (F-1) + (V-1), or V - E+F= 2. [Credit : Unknown]
@sterlingveil
@sterlingveil 4 жыл бұрын
Vote this up people, this comment was as cool as the video itself!!
@MeesBorg
@MeesBorg 4 жыл бұрын
Damn, im impressed :) So can there be a body of water crossing a side of the polyhedron? Because if *not* : then I dont get how point 2)" when water level rises new waterbodies are circling an island.. " is made. Cheers!
@sourav_kundu
@sourav_kundu 4 жыл бұрын
@@MeesBorg yes, the water can cross any edge. The edges have a lower height than the vertices, and the face centers have an even lower height than the edges. So, the water pools originally occupy the face centers and then cross some of the edges and join up the water bodies. Hope I could explain it.
@imadhamaidi
@imadhamaidi 4 жыл бұрын
how can you save youtube comments? this proof is just amazing
@VaradMahashabde
@VaradMahashabde 4 жыл бұрын
Isn't this the inductive proof? Doesn't matter, the visualization was amazing
@bostash8442
@bostash8442 4 жыл бұрын
"we will use two theorems proven in the previous two videos" *watches all the videos this channel made*
@geekjokes8458
@geekjokes8458 4 жыл бұрын
*again*
@timh.6872
@timh.6872 4 жыл бұрын
Wow. Very satisfying analytic proof as opposed to the technically correct but somewhat cumbersome induction proof for planar graphs. Working directly with the polyhedron as a preexisting whole made of parts instead of constructing it piece by piece feels so much more satisfying. I knew it was true because of the inductive proof, but now I know _why_ it's true.
@JM-us3fr
@JM-us3fr 4 жыл бұрын
Great stuff man. Such a simple argument. I only knew of the induction proof and the dual graph proof. This was also very elegant
@samdob8494
@samdob8494 4 жыл бұрын
Truly amazing proof. It blew my mind when I saw the last two videos were building up to this one. Keep up the great work!
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you for the support!
@antoniolewis1016
@antoniolewis1016 4 жыл бұрын
That was so brilliant it made me cry. Thank you!
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you for watching:))
@swankitydankity297
@swankitydankity297 4 жыл бұрын
I've never been able to understand the proofs of this one so when I saw your notification in my feed I knew that I then would finally understand :)
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
I am so glad to hear that. Thanks for the support!
@rodrigo-vl7bi
@rodrigo-vl7bi 4 жыл бұрын
Awesome as always, the fact you can explain math almost without words is mind-blowing
@Magnasium038
@Magnasium038 4 жыл бұрын
Amazing. That you utilised the previous two as build-up for this beautiful proof of a graph theory theorem without really using a graph theoretical proof is amazing.
@ClaudioDiBiase16
@ClaudioDiBiase16 4 жыл бұрын
This is one of the most amazing proofs i've ever seen, the result just comes out of nowhere, it really seems like a magic trick at first glance, but then you realize it has been in front of your eyes for all the time. Thanks for making this videos, you have not just shown me a marvelous proof, you have made my day!
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you for very much. Your comment made my day too:)
@DonReba
@DonReba 4 жыл бұрын
What a good way to present this creative geometric proof!
@ranjitsarkar3126
@ranjitsarkar3126 3 жыл бұрын
Absolutely gorgeous. I usually don't complement people directly for being good at something. But for this one, I just can't control myself
@mikikaboom9084
@mikikaboom9084 4 жыл бұрын
Very interesting approach.
@HebaruSan
@HebaruSan 4 жыл бұрын
The animation for projecting the cube onto the sphere was _gorgeous_ !
@HebaruSan
@HebaruSan 4 жыл бұрын
Is it obvious that ANY convex polyhedron can be projected onto a sphere such that all of its faces form spherical polygons (i.e. each edge forms a part of a great circle)? I believe you that it's true, but I could see someone wanting to be convinced that there are no corner-case convex polyhedra where the angles of the edges are wrong somehow.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks:))
@TheOfficialCzex
@TheOfficialCzex 4 жыл бұрын
Well-produced, as always.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you:)
@vedantverma4797
@vedantverma4797 4 жыл бұрын
Very epic bruh!!!! Epic quality
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks:>
@sasmitarath4312
@sasmitarath4312 4 жыл бұрын
Monalisa : I m the most beautiful. Think twice : see this
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:D
@sasmitarath4312
@sasmitarath4312 4 жыл бұрын
@@ThinkTwiceLtu please make a video on the banac tarski paradox
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
@@sasmitarath4312 vsauce has a brilliant, in depth video on that topic:)
@sasmitarath4312
@sasmitarath4312 4 жыл бұрын
@@ThinkTwiceLtu ya, but if not this then make avideo on brouwer's fixed point theorem
@omerresnikoff3565
@omerresnikoff3565 4 жыл бұрын
@@ThinkTwiceLtu Yeah, I'd love an animation on any set-theoretic topic!
@jpalreis
@jpalreis 4 жыл бұрын
Very nice visualization indeed! And you keep improving! I'm definitely gonna show my students this and others videos when the time is right. And what do you use to create these animations?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you for the kind words! I'm happy to hear that. I use Cinema4d.
@jpalreis
@jpalreis 4 жыл бұрын
@@ThinkTwiceLtu Thanks for the tip! I'll try to animate something for my students in the near future. Keep the great work, math and artistic visualizations!
@kat5266
@kat5266 4 жыл бұрын
So... When can we see ur proofs for the millennial problems? I'm totally rooting for you! 😇
@emuman9
@emuman9 4 жыл бұрын
Beautiful.
@EntaroCeraphenine
@EntaroCeraphenine 4 жыл бұрын
The formula itself is magnificent while this proof is marvelous as well! I enjoyed both the Spherical Triangle video and the Triangulation video for their own regards but to think that they both combine to generate another marvelous proof is just beyond amazing!
@EastingAndNorthing
@EastingAndNorthing 4 жыл бұрын
But what would a spherical projected concave polyhedron look like?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Depends on the specific polyhedron. With some concave polyhedra the same reasoning would work and you could show that in fact V-E+F=2 would still hold. But it wouldn't be true for every concave polyhedron as the projection of some concave polyhedra in some cases wouldn't cover the whole surface area of the sphere or in other cases the faces and edges may intersect.
@jeff3608
@jeff3608 3 жыл бұрын
How are these videos so satisfying! How do you animate these videos?
@kaziaburousan166
@kaziaburousan166 4 жыл бұрын
When thik twice makes us think🖤🖤
@GideonEstellaPH
@GideonEstellaPH 4 жыл бұрын
true hehe
@HIHIQY1
@HIHIQY1 4 жыл бұрын
twice
@genericasianboi
@genericasianboi 4 жыл бұрын
T H I K
@notsoclearsky
@notsoclearsky 4 жыл бұрын
ThiCC
@columbus8myhw
@columbus8myhw 4 жыл бұрын
Think once
@halilibrahimkanpak65
@halilibrahimkanpak65 4 жыл бұрын
When he said 4π=2πV-2πE+2πF i felt that
@AmanKumar-vd1jc
@AmanKumar-vd1jc 4 жыл бұрын
Beautiful
@iiib2975
@iiib2975 4 жыл бұрын
when I first found this channel I felt like I found a treasure I stil feel that way
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Happy to hear that! Thanks a lot for the support:)
@rachele7398
@rachele7398 3 жыл бұрын
ty for color coding the theorem and the example this is magic, omg
@SemperMaximus
@SemperMaximus 4 жыл бұрын
Mind-blowing! Beauty of maths, visualized! Been watching your videos for a long time and each time is special. Great job and thank you sir.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you so much!!
@sonalichakraborty6830
@sonalichakraborty6830 4 жыл бұрын
Amazing bro...and I still wonder why schools and other institutions don't follow these methods...at least they can follow people like you
@hoodedR
@hoodedR 4 жыл бұрын
Love your channel and ita contents! 😊 Never fails to make me happy
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you for the support:) happy to hear that.
@jlpsinde
@jlpsinde 4 жыл бұрын
Amazing work! Hug from Portugal.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks! :)))
@redaabakhti768
@redaabakhti768 3 жыл бұрын
this channel should pop up in my recommended videos more often
@shambosaha9727
@shambosaha9727 3 жыл бұрын
Best presentation of Legendre's proof I have ever seen.
@kshitijsharma2200
@kshitijsharma2200 4 жыл бұрын
Interesting was looking for it yesterday.
@drewmichael3986
@drewmichael3986 4 жыл бұрын
That was sooo nice I havent seen a proper proof before for this
@음-o9m
@음-o9m 4 жыл бұрын
Oh my god... It's beautiful ❤️
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
@andresfernandoaranda5498
@andresfernandoaranda5498 4 жыл бұрын
What tool did you use to make the video?
@ansonngpersonalgoogleaccou5104
@ansonngpersonalgoogleaccou5104 4 жыл бұрын
This is inspiring!!!!!!!!
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:))
@alpharum3141592
@alpharum3141592 4 жыл бұрын
It's a wonderful presentation about graph theory and topology. Also, after watching this video, I planned another problem and discovered a result: If a graph with faces is "isomorphic" to a torus surface (a donut shape), then F+V=E If you prefer, would you proof it geometrically?
@hemantsingh5537
@hemantsingh5537 4 жыл бұрын
Keep making these types of video...too good!!
@nishameena8675
@nishameena8675 2 жыл бұрын
Awesome and thank you for such a explaination
@louis2271
@louis2271 4 жыл бұрын
This is soooooo cool :D
@benburdick9834
@benburdick9834 4 жыл бұрын
That's one satisfying proof.
@thatdodude1464
@thatdodude1464 4 жыл бұрын
Pls do collatz conjecture next :)
@matron9936
@matron9936 4 жыл бұрын
Thanks, to you and Euler
@erfanshekarriz4707
@erfanshekarriz4707 4 жыл бұрын
Yooo his KZbin videos are cool and all but have you checked his INSTA though. Asthetics. af. 😩
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
ฅ^•ﻌ•^ฅ
@betabeast12
@betabeast12 4 жыл бұрын
Juat did. And im like- *damn*
@O_Fisikomunista
@O_Fisikomunista Жыл бұрын
bro?? it's an AMAZING proof, i never saw it before.
@usernameisamyth
@usernameisamyth 4 жыл бұрын
Excellent proof
@barbietripping
@barbietripping 4 жыл бұрын
Lovely proof, and awesome animation. What are you using to animate this?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks! I use C4D.
@DiegoMathemagician
@DiegoMathemagician 4 жыл бұрын
Very pretty! I spent like 30 minutes watching it so I don't miss any details lol. Is this proof yours? Never seen it before. I did not see the connection between spherical polygons and Euler's Formula until the end, which made it awesome :) I just have one question: how do you know that when the polyhedra are projected into the sphere, the edges become circumference arcs instead of some other curvy segments, i.e. the faces become spherical polygons instead of other closed loops?
@sayamqazi
@sayamqazi 4 жыл бұрын
because all of the edges of polyhedron are straight lines and any straight line projected from inside the sphere will become the spherical arc which in turn means all the faces become spherical polygons.
@AlgyCuber
@AlgyCuber 4 жыл бұрын
0:29 polyhedorn
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:(
@ZEPHYRZHANG-mg8zi
@ZEPHYRZHANG-mg8zi Ай бұрын
Very high quality videos
@burrbonus
@burrbonus 4 ай бұрын
2:00 -- The two-minute warning
@mitranoarthur
@mitranoarthur 4 жыл бұрын
This is really wonderful. Do you have a video of the area of the sphere?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
thanks! yes I do. I believe it's called cavalieris principle.
@mitranoarthur
@mitranoarthur 4 жыл бұрын
@@ThinkTwiceLtu Oh I thought that one was about the volume of the sphere. That one is cool too.
@georgefan2977
@georgefan2977 4 жыл бұрын
Throughout the video I be like: Okay, ooo, wow, whaaaat, WOW, DAMN
@Davi-c4q
@Davi-c4q 3 жыл бұрын
I just thought that the n in the sum of the edges was a bit confusing, because it gave the idea of being a constant. Besides that, great video
@drozfarnyline4940
@drozfarnyline4940 4 жыл бұрын
OMG! Your channel is outstanding.please upload video every week.Thank you so much!😊
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks! It takes a lot of time to produce one video, but I will try to upload more frequently over the summer. See you soon:)
@BeesAndSunshine
@BeesAndSunshine 4 жыл бұрын
So this is a rule that convex polyhedron must abide by, but concave polyhedron can fulfill it too, correct? So how do you determine if a polyhedron is concave or convex if it does fit this rule?
@themaverick1891
@themaverick1891 4 жыл бұрын
I'm glad that I subscribed to your channel.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:)
@soumitrapharikal5503
@soumitrapharikal5503 4 жыл бұрын
5:52 How can you say the angle is 2pie, since in a curved surface the angles get distorted, won't we need to calculate the Gaussian Curvature here, then Apply the Girrard Theorem?
@hxka
@hxka 4 жыл бұрын
This is sum of angles around a point, not sum of angles in a triangle.
@realedna
@realedna 4 жыл бұрын
OK, curved edges meeting up at a point on a sphere is like on a plane. There is no curvature involved, if there is no distance from the point.
@nadiyayasmeen3928
@nadiyayasmeen3928 4 жыл бұрын
6:01 I don't understand why it's 2E "The sum of number of sides of all polygon is 2E since each edge is shared by 2 faces." But what about overlap. Shouldn't we subtract the overlapping faces or am I getting something wrong here? Someone pls help
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
If you count each side of every polygon you will double count each side because for every side there are two polygons sharing it.
@nadiyayasmeen3928
@nadiyayasmeen3928 4 жыл бұрын
@@ThinkTwiceLtu Ah yes. Overlooked that. Amazing video btw. I never looked into the derivation because it used graph theory which I knew nothing about. This is an amazing proof
@moisesbello-morales343
@moisesbello-morales343 8 ай бұрын
Great proof
@chotabacha18
@chotabacha18 4 жыл бұрын
Its beautiful....i really love watching your videos ,it gives great pleasure and i really appreciate your hard work in creating such wonderful explanatory mathematical videos
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks for the support:)
@pool7216
@pool7216 4 жыл бұрын
Pure magic.
@Diegorussod.r
@Diegorussod.r 4 жыл бұрын
better short video; but this is equal good.
@carminesans90
@carminesans90 4 жыл бұрын
Beautiful and smart
@sasoribi1341
@sasoribi1341 4 жыл бұрын
Thanks.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
thanks for watching:)
@sigmac30
@sigmac30 4 жыл бұрын
Incredible, as always
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks!!
@Eazoon
@Eazoon 4 жыл бұрын
Does this work for any star-shaped polyhedron? I feel like convexity was only used when projecting to the sphere, but that doesn't need full convexity.
@kaisarakimzhan1927
@kaisarakimzhan1927 4 жыл бұрын
Wow, it's well shown. Very understandable and pretty too.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thanks!
@ryanbell3704
@ryanbell3704 3 жыл бұрын
can someone please explain to me why this same proof doesn’t work for concave polyhedra? I know the whole “projecting onto a sphere” thing is immediate with convexity, but i cannot think of an example of a concave polyhedron that wouldn’t also project similarly onto a sphere
@imadhamaidi
@imadhamaidi 4 жыл бұрын
does this proof extend to any shape that is topologically equivalent to a convex shape?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Yes
@Fortynienq12
@Fortynienq12 4 жыл бұрын
Which software do you use to make videos?
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Cinema 4d
@Fortynienq12
@Fortynienq12 4 жыл бұрын
@@ThinkTwiceLtu thanks a lot brother 😇😇
@iagodantasf
@iagodantasf 4 жыл бұрын
Cinema 4D? Amazing video by the way
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Yes and thank you:))
@jimmykitty
@jimmykitty 2 жыл бұрын
Awesome 😊💖💖
@ZReChannel
@ZReChannel 4 жыл бұрын
Wow, it's pretty neat
@lopkobor6916
@lopkobor6916 4 жыл бұрын
My only question at this point is how do people even figure these proofs out? Just the sheer amount of imagination and creativity that comes into certain proofs is too much for me to handle.
@TechToppers
@TechToppers 3 жыл бұрын
The pure joy of induction!
@easymarks1637
@easymarks1637 4 жыл бұрын
Love these videos so much but why don't you show equation simplification visually too? You often jump over a lot of steps with factors and like terms, arriving immediately at the simplified version. It's sometimes difficult to see how you got somewhere, especially if you've rearranged the term order.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you! Yes you're right sometimes I might skip over some simplification steps. However the software that I'm using becomes very slow the more text objects I add into the scene so I always try to deal with as little text/equation manipulation as possible. I understand your point though, I'll keep your comment in mind when making future videos.
@MadOokami
@MadOokami 4 жыл бұрын
Can you make it dark mode friendly next time?
@janherman2073
@janherman2073 4 жыл бұрын
When placing the polyhedron inside the unit sphere, you should ensure that the centre of the sphere lies inside the polyhedron. Otherwise the projection won't cover the whole sphere...
@mediter123
@mediter123 4 жыл бұрын
Can't you assume this possible without loss of generality? Like you're right, but is there a situation where some convex polyhedron can't contain the center?
@janherman2073
@janherman2073 4 жыл бұрын
@@mediter123 No, there is not. You can place the polyhedron such that its arbitrary inner point coincides with the centre of the sphere and scale it down to fit inside the sphere. But my point was that the position of the polyhedron is not arbitrary...
@carollim5382
@carollim5382 4 жыл бұрын
not a fan of mathematics, but your animations make it attractive
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:>
@sammyskye9498
@sammyskye9498 3 жыл бұрын
I have some gripes with this, for example; Take a cube and translate the vertices randomly. using this proof, it will still be convex even though the definition would say otherwise. Unless this proof is talking strictly about *regular* polyhedra, which wasn't stated anywhere.) then I don't understand how this can be a proof. P.S. Please enlighten me.
@oldreddragon1579
@oldreddragon1579 3 жыл бұрын
V-E+F=2 except for a Torus which is V-E+F=0. What is it when the Torus has a center of 0? That is if you draw it as as a section view it would look like a pair of circles joined at a point on their circumference. I'm not a Mathematician so bare with me :) Is this V-E+F=1?
@hamiltonianpathondodecahed5236
@hamiltonianpathondodecahed5236 4 жыл бұрын
lubly made my day
@farisakmal2722
@farisakmal2722 4 жыл бұрын
eyegasm
@oosmanbeekawoo
@oosmanbeekawoo Жыл бұрын
The Math Speaks For Itself - Leon Eulermann
@garrettcredi5561
@garrettcredi5561 4 жыл бұрын
Couldn't you also drop the convexity requirement and generalize it to any shape that can be continuously and bijectively morphed into a sphere along some homeomorphism f? Points must go to points so f(Vertex set) must be another vertex set (of the same size since f is a bijection); f(Edge set) must be another edge set since non can be destroyed and if any were created that would imply the image of 2 edges intersect so the original edges must intersect (as f is again bijective); and f(Face set) must be another face set since a face is uniquely bounded by a loop and loops go to loops over a continuous function. Then your proof could proceed as normal?
@SpencerTwiddy
@SpencerTwiddy 4 жыл бұрын
Yes you could, that homeomorphism step is the only dependency for concave not working. But I think he stated it this way because saying you proved something for all convex polyhedra is simpler and better for a popular YT presentation than saying you proved something for all shapes “that can be continuously and bijectively morphed into a sphere along some homeomorphism”
@SpencerTwiddy
@SpencerTwiddy 4 жыл бұрын
But I agree, that would have at least been a good extension to note at the end, for completeness
@jiaming5269
@jiaming5269 4 жыл бұрын
Wow....
@nommindymple6241
@nommindymple6241 4 жыл бұрын
I wish the people who downvoted this would add comments about WHY they downvoted. It's a geometric math proof. Are they seeing an error with it? If so, it would be nice to know what that might be.
@yuufgreat9935
@yuufgreat9935 4 жыл бұрын
Sound is way toooo low
@AntoCharles
@AntoCharles 4 жыл бұрын
Continues to be some of the crispiest math on the interwebs.
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
:0
@shoam2103
@shoam2103 4 жыл бұрын
Brilliant in its simplicity! You're like a magician: * here's a small proof on my left hand, and another on my right👈👉 . * see how combining these 2 almost appears to make this more convoluted🐇🎩? * but voilà, the proof! 🎉
@Jacob-qx4bc
@Jacob-qx4bc 4 жыл бұрын
math time
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
fun time:)
@cosimobaldi03
@cosimobaldi03 4 жыл бұрын
You're a fucking genius! Also this makes me wonder if we can prove it by reducing every polyhedra to a polyhedra with triangle faces only and then considering only that particular case...
@dooflesshampoofles9226
@dooflesshampoofles9226 3 жыл бұрын
Me watching funky math videos at 3 am
@studset
@studset 4 жыл бұрын
Check out "Proofs And Refutations" by Imre Lakatos if you have not already done it. Nice video!
@ThinkTwiceLtu
@ThinkTwiceLtu 4 жыл бұрын
Thank you will definitely check it out:)
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 33 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 18 МЛН
But why is a sphere's surface area four times its shadow?
15:51
3Blue1Brown
Рет қаралды 8 МЛН
Actual Proof 1+1=2
3:02
BriTheMathGuy
Рет қаралды 280 М.
The Five Color Theorem (without Kempe chains)
17:14
Timothy Sun
Рет қаралды 88 М.
Pick's Theorem (From Euler's Planar Graph Formula)
9:09
Dr. Will Wood
Рет қаралды 6 М.
How I made Math: Final Boss
16:31
Jake Walker
Рет қаралды 418 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,2 МЛН
Proof: Euler's Formula for Plane Graphs | Graph Theory
15:55
Wrath of Math
Рет қаралды 23 М.
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 33 МЛН