Woah! This proof is really unexpected! I have only seen the proof by induction, but this is actually quite a creative alternative proof.
@arikwolf37774 жыл бұрын
Also why V - E + F = 2 doesn't always work for concave polyhedrons. The three-section arch in the concave example works because it can be morph into a convex one an therefore be mapped to a sphere. But a N-section ring, (a torus,) cannot.
@Poklaz14 жыл бұрын
@@arikwolf3777 maybe works only for starry polyhedra, i.e. which can be mapped on a sphere
@ThighFish Жыл бұрын
How even would this be possible to prove inductively?
@sourav_kundu4 жыл бұрын
Here is an alternate proof. Imagine the polyhedron as a planet hanging in space. Imagine that there is a hollow in every face, and every vertex is a mountain. Imagine that every hollow is filled with water. Now imagine it starts to rain on the planet, and the water level starts to rise. One by one the water crosses the edges, until the planet is one entire ocean with V islands sticking up. Whenever the water crosses an edge, there are two possibilities. Either: (a) two bodies of water have joined into one (number of lakes decreases by one, number of landmasses stays the same); or (b) a body of water has joined up with itself, encircling a new island (number of lakes stays the same, number of landmasses increases by one). Initially, there are F lakes and 1 landmass. At the end of the flooding, there is 1 lake and V landmasses. Therefore, there must have been (F-1) edge crossings of type (a), and (V - 1) crossings of type (b). Every edge got crossed exactly once. So E = (F-1) + (V-1), or V - E+F= 2. [Credit : Unknown]
@sterlingveil4 жыл бұрын
Vote this up people, this comment was as cool as the video itself!!
@MeesBorg4 жыл бұрын
Damn, im impressed :) So can there be a body of water crossing a side of the polyhedron? Because if *not* : then I dont get how point 2)" when water level rises new waterbodies are circling an island.. " is made. Cheers!
@sourav_kundu4 жыл бұрын
@@MeesBorg yes, the water can cross any edge. The edges have a lower height than the vertices, and the face centers have an even lower height than the edges. So, the water pools originally occupy the face centers and then cross some of the edges and join up the water bodies. Hope I could explain it.
@imadhamaidi4 жыл бұрын
how can you save youtube comments? this proof is just amazing
@VaradMahashabde4 жыл бұрын
Isn't this the inductive proof? Doesn't matter, the visualization was amazing
@bostash84424 жыл бұрын
"we will use two theorems proven in the previous two videos" *watches all the videos this channel made*
@geekjokes84584 жыл бұрын
*again*
@timh.68724 жыл бұрын
Wow. Very satisfying analytic proof as opposed to the technically correct but somewhat cumbersome induction proof for planar graphs. Working directly with the polyhedron as a preexisting whole made of parts instead of constructing it piece by piece feels so much more satisfying. I knew it was true because of the inductive proof, but now I know _why_ it's true.
@JM-us3fr4 жыл бұрын
Great stuff man. Such a simple argument. I only knew of the induction proof and the dual graph proof. This was also very elegant
@samdob84944 жыл бұрын
Truly amazing proof. It blew my mind when I saw the last two videos were building up to this one. Keep up the great work!
@ThinkTwiceLtu4 жыл бұрын
Thank you for the support!
@antoniolewis10164 жыл бұрын
That was so brilliant it made me cry. Thank you!
@ThinkTwiceLtu4 жыл бұрын
Thank you for watching:))
@swankitydankity2974 жыл бұрын
I've never been able to understand the proofs of this one so when I saw your notification in my feed I knew that I then would finally understand :)
@ThinkTwiceLtu4 жыл бұрын
I am so glad to hear that. Thanks for the support!
@rodrigo-vl7bi4 жыл бұрын
Awesome as always, the fact you can explain math almost without words is mind-blowing
@Magnasium0384 жыл бұрын
Amazing. That you utilised the previous two as build-up for this beautiful proof of a graph theory theorem without really using a graph theoretical proof is amazing.
@ClaudioDiBiase164 жыл бұрын
This is one of the most amazing proofs i've ever seen, the result just comes out of nowhere, it really seems like a magic trick at first glance, but then you realize it has been in front of your eyes for all the time. Thanks for making this videos, you have not just shown me a marvelous proof, you have made my day!
@ThinkTwiceLtu4 жыл бұрын
Thank you for very much. Your comment made my day too:)
@DonReba4 жыл бұрын
What a good way to present this creative geometric proof!
@ranjitsarkar31263 жыл бұрын
Absolutely gorgeous. I usually don't complement people directly for being good at something. But for this one, I just can't control myself
@mikikaboom90844 жыл бұрын
Very interesting approach.
@HebaruSan4 жыл бұрын
The animation for projecting the cube onto the sphere was _gorgeous_ !
@HebaruSan4 жыл бұрын
Is it obvious that ANY convex polyhedron can be projected onto a sphere such that all of its faces form spherical polygons (i.e. each edge forms a part of a great circle)? I believe you that it's true, but I could see someone wanting to be convinced that there are no corner-case convex polyhedra where the angles of the edges are wrong somehow.
@ThinkTwiceLtu4 жыл бұрын
Thanks:))
@TheOfficialCzex4 жыл бұрын
Well-produced, as always.
@ThinkTwiceLtu4 жыл бұрын
Thank you:)
@vedantverma47974 жыл бұрын
Very epic bruh!!!! Epic quality
@ThinkTwiceLtu4 жыл бұрын
Thanks:>
@sasmitarath43124 жыл бұрын
Monalisa : I m the most beautiful. Think twice : see this
@ThinkTwiceLtu4 жыл бұрын
:D
@sasmitarath43124 жыл бұрын
@@ThinkTwiceLtu please make a video on the banac tarski paradox
@ThinkTwiceLtu4 жыл бұрын
@@sasmitarath4312 vsauce has a brilliant, in depth video on that topic:)
@sasmitarath43124 жыл бұрын
@@ThinkTwiceLtu ya, but if not this then make avideo on brouwer's fixed point theorem
@omerresnikoff35654 жыл бұрын
@@ThinkTwiceLtu Yeah, I'd love an animation on any set-theoretic topic!
@jpalreis4 жыл бұрын
Very nice visualization indeed! And you keep improving! I'm definitely gonna show my students this and others videos when the time is right. And what do you use to create these animations?
@ThinkTwiceLtu4 жыл бұрын
Thank you for the kind words! I'm happy to hear that. I use Cinema4d.
@jpalreis4 жыл бұрын
@@ThinkTwiceLtu Thanks for the tip! I'll try to animate something for my students in the near future. Keep the great work, math and artistic visualizations!
@kat52664 жыл бұрын
So... When can we see ur proofs for the millennial problems? I'm totally rooting for you! 😇
@emuman94 жыл бұрын
Beautiful.
@EntaroCeraphenine4 жыл бұрын
The formula itself is magnificent while this proof is marvelous as well! I enjoyed both the Spherical Triangle video and the Triangulation video for their own regards but to think that they both combine to generate another marvelous proof is just beyond amazing!
@EastingAndNorthing4 жыл бұрын
But what would a spherical projected concave polyhedron look like?
@ThinkTwiceLtu4 жыл бұрын
Depends on the specific polyhedron. With some concave polyhedra the same reasoning would work and you could show that in fact V-E+F=2 would still hold. But it wouldn't be true for every concave polyhedron as the projection of some concave polyhedra in some cases wouldn't cover the whole surface area of the sphere or in other cases the faces and edges may intersect.
@jeff36083 жыл бұрын
How are these videos so satisfying! How do you animate these videos?
@kaziaburousan1664 жыл бұрын
When thik twice makes us think🖤🖤
@GideonEstellaPH4 жыл бұрын
true hehe
@HIHIQY14 жыл бұрын
twice
@genericasianboi4 жыл бұрын
T H I K
@notsoclearsky4 жыл бұрын
ThiCC
@columbus8myhw4 жыл бұрын
Think once
@halilibrahimkanpak654 жыл бұрын
When he said 4π=2πV-2πE+2πF i felt that
@AmanKumar-vd1jc4 жыл бұрын
Beautiful
@iiib29754 жыл бұрын
when I first found this channel I felt like I found a treasure I stil feel that way
@ThinkTwiceLtu4 жыл бұрын
Happy to hear that! Thanks a lot for the support:)
@rachele73983 жыл бұрын
ty for color coding the theorem and the example this is magic, omg
@SemperMaximus4 жыл бұрын
Mind-blowing! Beauty of maths, visualized! Been watching your videos for a long time and each time is special. Great job and thank you sir.
@ThinkTwiceLtu4 жыл бұрын
Thank you so much!!
@sonalichakraborty68304 жыл бұрын
Amazing bro...and I still wonder why schools and other institutions don't follow these methods...at least they can follow people like you
@hoodedR4 жыл бұрын
Love your channel and ita contents! 😊 Never fails to make me happy
@ThinkTwiceLtu4 жыл бұрын
Thank you for the support:) happy to hear that.
@jlpsinde4 жыл бұрын
Amazing work! Hug from Portugal.
@ThinkTwiceLtu4 жыл бұрын
Thanks! :)))
@redaabakhti7683 жыл бұрын
this channel should pop up in my recommended videos more often
@shambosaha97273 жыл бұрын
Best presentation of Legendre's proof I have ever seen.
@kshitijsharma22004 жыл бұрын
Interesting was looking for it yesterday.
@drewmichael39864 жыл бұрын
That was sooo nice I havent seen a proper proof before for this
@음-o9m4 жыл бұрын
Oh my god... It's beautiful ❤️
@ThinkTwiceLtu4 жыл бұрын
@andresfernandoaranda54984 жыл бұрын
What tool did you use to make the video?
@ansonngpersonalgoogleaccou51044 жыл бұрын
This is inspiring!!!!!!!!
@ThinkTwiceLtu4 жыл бұрын
:))
@alpharum31415924 жыл бұрын
It's a wonderful presentation about graph theory and topology. Also, after watching this video, I planned another problem and discovered a result: If a graph with faces is "isomorphic" to a torus surface (a donut shape), then F+V=E If you prefer, would you proof it geometrically?
@hemantsingh55374 жыл бұрын
Keep making these types of video...too good!!
@nishameena86752 жыл бұрын
Awesome and thank you for such a explaination
@louis22714 жыл бұрын
This is soooooo cool :D
@benburdick98344 жыл бұрын
That's one satisfying proof.
@thatdodude14644 жыл бұрын
Pls do collatz conjecture next :)
@matron99364 жыл бұрын
Thanks, to you and Euler
@erfanshekarriz47074 жыл бұрын
Yooo his KZbin videos are cool and all but have you checked his INSTA though. Asthetics. af. 😩
@ThinkTwiceLtu4 жыл бұрын
ฅ^•ﻌ•^ฅ
@betabeast124 жыл бұрын
Juat did. And im like- *damn*
@O_Fisikomunista Жыл бұрын
bro?? it's an AMAZING proof, i never saw it before.
@usernameisamyth4 жыл бұрын
Excellent proof
@barbietripping4 жыл бұрын
Lovely proof, and awesome animation. What are you using to animate this?
@ThinkTwiceLtu4 жыл бұрын
Thanks! I use C4D.
@DiegoMathemagician4 жыл бұрын
Very pretty! I spent like 30 minutes watching it so I don't miss any details lol. Is this proof yours? Never seen it before. I did not see the connection between spherical polygons and Euler's Formula until the end, which made it awesome :) I just have one question: how do you know that when the polyhedra are projected into the sphere, the edges become circumference arcs instead of some other curvy segments, i.e. the faces become spherical polygons instead of other closed loops?
@sayamqazi4 жыл бұрын
because all of the edges of polyhedron are straight lines and any straight line projected from inside the sphere will become the spherical arc which in turn means all the faces become spherical polygons.
@AlgyCuber4 жыл бұрын
0:29 polyhedorn
@ThinkTwiceLtu4 жыл бұрын
:(
@ZEPHYRZHANG-mg8ziАй бұрын
Very high quality videos
@burrbonus4 ай бұрын
2:00 -- The two-minute warning
@mitranoarthur4 жыл бұрын
This is really wonderful. Do you have a video of the area of the sphere?
@ThinkTwiceLtu4 жыл бұрын
thanks! yes I do. I believe it's called cavalieris principle.
@mitranoarthur4 жыл бұрын
@@ThinkTwiceLtu Oh I thought that one was about the volume of the sphere. That one is cool too.
@georgefan29774 жыл бұрын
Throughout the video I be like: Okay, ooo, wow, whaaaat, WOW, DAMN
@Davi-c4q3 жыл бұрын
I just thought that the n in the sum of the edges was a bit confusing, because it gave the idea of being a constant. Besides that, great video
@drozfarnyline49404 жыл бұрын
OMG! Your channel is outstanding.please upload video every week.Thank you so much!😊
@ThinkTwiceLtu4 жыл бұрын
Thanks! It takes a lot of time to produce one video, but I will try to upload more frequently over the summer. See you soon:)
@BeesAndSunshine4 жыл бұрын
So this is a rule that convex polyhedron must abide by, but concave polyhedron can fulfill it too, correct? So how do you determine if a polyhedron is concave or convex if it does fit this rule?
@themaverick18914 жыл бұрын
I'm glad that I subscribed to your channel.
@ThinkTwiceLtu4 жыл бұрын
:)
@soumitrapharikal55034 жыл бұрын
5:52 How can you say the angle is 2pie, since in a curved surface the angles get distorted, won't we need to calculate the Gaussian Curvature here, then Apply the Girrard Theorem?
@hxka4 жыл бұрын
This is sum of angles around a point, not sum of angles in a triangle.
@realedna4 жыл бұрын
OK, curved edges meeting up at a point on a sphere is like on a plane. There is no curvature involved, if there is no distance from the point.
@nadiyayasmeen39284 жыл бұрын
6:01 I don't understand why it's 2E "The sum of number of sides of all polygon is 2E since each edge is shared by 2 faces." But what about overlap. Shouldn't we subtract the overlapping faces or am I getting something wrong here? Someone pls help
@ThinkTwiceLtu4 жыл бұрын
If you count each side of every polygon you will double count each side because for every side there are two polygons sharing it.
@nadiyayasmeen39284 жыл бұрын
@@ThinkTwiceLtu Ah yes. Overlooked that. Amazing video btw. I never looked into the derivation because it used graph theory which I knew nothing about. This is an amazing proof
@moisesbello-morales3438 ай бұрын
Great proof
@chotabacha184 жыл бұрын
Its beautiful....i really love watching your videos ,it gives great pleasure and i really appreciate your hard work in creating such wonderful explanatory mathematical videos
@ThinkTwiceLtu4 жыл бұрын
Thanks for the support:)
@pool72164 жыл бұрын
Pure magic.
@Diegorussod.r4 жыл бұрын
better short video; but this is equal good.
@carminesans904 жыл бұрын
Beautiful and smart
@sasoribi13414 жыл бұрын
Thanks.
@ThinkTwiceLtu4 жыл бұрын
thanks for watching:)
@sigmac304 жыл бұрын
Incredible, as always
@ThinkTwiceLtu4 жыл бұрын
Thanks!!
@Eazoon4 жыл бұрын
Does this work for any star-shaped polyhedron? I feel like convexity was only used when projecting to the sphere, but that doesn't need full convexity.
@kaisarakimzhan19274 жыл бұрын
Wow, it's well shown. Very understandable and pretty too.
@ThinkTwiceLtu4 жыл бұрын
Thanks!
@ryanbell37043 жыл бұрын
can someone please explain to me why this same proof doesn’t work for concave polyhedra? I know the whole “projecting onto a sphere” thing is immediate with convexity, but i cannot think of an example of a concave polyhedron that wouldn’t also project similarly onto a sphere
@imadhamaidi4 жыл бұрын
does this proof extend to any shape that is topologically equivalent to a convex shape?
@ThinkTwiceLtu4 жыл бұрын
Yes
@Fortynienq124 жыл бұрын
Which software do you use to make videos?
@ThinkTwiceLtu4 жыл бұрын
Cinema 4d
@Fortynienq124 жыл бұрын
@@ThinkTwiceLtu thanks a lot brother 😇😇
@iagodantasf4 жыл бұрын
Cinema 4D? Amazing video by the way
@ThinkTwiceLtu4 жыл бұрын
Yes and thank you:))
@jimmykitty2 жыл бұрын
Awesome 😊💖💖
@ZReChannel4 жыл бұрын
Wow, it's pretty neat
@lopkobor69164 жыл бұрын
My only question at this point is how do people even figure these proofs out? Just the sheer amount of imagination and creativity that comes into certain proofs is too much for me to handle.
@TechToppers3 жыл бұрын
The pure joy of induction!
@easymarks16374 жыл бұрын
Love these videos so much but why don't you show equation simplification visually too? You often jump over a lot of steps with factors and like terms, arriving immediately at the simplified version. It's sometimes difficult to see how you got somewhere, especially if you've rearranged the term order.
@ThinkTwiceLtu4 жыл бұрын
Thank you! Yes you're right sometimes I might skip over some simplification steps. However the software that I'm using becomes very slow the more text objects I add into the scene so I always try to deal with as little text/equation manipulation as possible. I understand your point though, I'll keep your comment in mind when making future videos.
@MadOokami4 жыл бұрын
Can you make it dark mode friendly next time?
@janherman20734 жыл бұрын
When placing the polyhedron inside the unit sphere, you should ensure that the centre of the sphere lies inside the polyhedron. Otherwise the projection won't cover the whole sphere...
@mediter1234 жыл бұрын
Can't you assume this possible without loss of generality? Like you're right, but is there a situation where some convex polyhedron can't contain the center?
@janherman20734 жыл бұрын
@@mediter123 No, there is not. You can place the polyhedron such that its arbitrary inner point coincides with the centre of the sphere and scale it down to fit inside the sphere. But my point was that the position of the polyhedron is not arbitrary...
@carollim53824 жыл бұрын
not a fan of mathematics, but your animations make it attractive
@ThinkTwiceLtu4 жыл бұрын
:>
@sammyskye94983 жыл бұрын
I have some gripes with this, for example; Take a cube and translate the vertices randomly. using this proof, it will still be convex even though the definition would say otherwise. Unless this proof is talking strictly about *regular* polyhedra, which wasn't stated anywhere.) then I don't understand how this can be a proof. P.S. Please enlighten me.
@oldreddragon15793 жыл бұрын
V-E+F=2 except for a Torus which is V-E+F=0. What is it when the Torus has a center of 0? That is if you draw it as as a section view it would look like a pair of circles joined at a point on their circumference. I'm not a Mathematician so bare with me :) Is this V-E+F=1?
@hamiltonianpathondodecahed52364 жыл бұрын
lubly made my day
@farisakmal27224 жыл бұрын
eyegasm
@oosmanbeekawoo Жыл бұрын
The Math Speaks For Itself - Leon Eulermann
@garrettcredi55614 жыл бұрын
Couldn't you also drop the convexity requirement and generalize it to any shape that can be continuously and bijectively morphed into a sphere along some homeomorphism f? Points must go to points so f(Vertex set) must be another vertex set (of the same size since f is a bijection); f(Edge set) must be another edge set since non can be destroyed and if any were created that would imply the image of 2 edges intersect so the original edges must intersect (as f is again bijective); and f(Face set) must be another face set since a face is uniquely bounded by a loop and loops go to loops over a continuous function. Then your proof could proceed as normal?
@SpencerTwiddy4 жыл бұрын
Yes you could, that homeomorphism step is the only dependency for concave not working. But I think he stated it this way because saying you proved something for all convex polyhedra is simpler and better for a popular YT presentation than saying you proved something for all shapes “that can be continuously and bijectively morphed into a sphere along some homeomorphism”
@SpencerTwiddy4 жыл бұрын
But I agree, that would have at least been a good extension to note at the end, for completeness
@jiaming52694 жыл бұрын
Wow....
@nommindymple62414 жыл бұрын
I wish the people who downvoted this would add comments about WHY they downvoted. It's a geometric math proof. Are they seeing an error with it? If so, it would be nice to know what that might be.
@yuufgreat99354 жыл бұрын
Sound is way toooo low
@AntoCharles4 жыл бұрын
Continues to be some of the crispiest math on the interwebs.
@ThinkTwiceLtu4 жыл бұрын
:0
@shoam21034 жыл бұрын
Brilliant in its simplicity! You're like a magician: * here's a small proof on my left hand, and another on my right👈👉 . * see how combining these 2 almost appears to make this more convoluted🐇🎩? * but voilà, the proof! 🎉
@Jacob-qx4bc4 жыл бұрын
math time
@ThinkTwiceLtu4 жыл бұрын
fun time:)
@cosimobaldi034 жыл бұрын
You're a fucking genius! Also this makes me wonder if we can prove it by reducing every polyhedra to a polyhedra with triangle faces only and then considering only that particular case...
@dooflesshampoofles92263 жыл бұрын
Me watching funky math videos at 3 am
@studset4 жыл бұрын
Check out "Proofs And Refutations" by Imre Lakatos if you have not already done it. Nice video!