5:05 Flex on your friends by telling them that beach balls are actually colored in 6 spherical lunes
@michaeltedders16504 жыл бұрын
mathematically,Its called hosohedron
@vladanikin6964 жыл бұрын
You can flex even more by calling those lunes spherical digons. That's an actual name, no joke
@paulfoss53854 жыл бұрын
Vlad Anikin Never understood why they used the prefix di instead of bi which would be easier for people approaching the subject. I think it is long past time we just let digons be bigons.
@yimoawanardo4 жыл бұрын
@@paulfoss5385 story of having the Greeks understand you too lol
@vladanikin6964 жыл бұрын
@@paulfoss5385 because of consistency. Di- is from Greek and bi- is from Latin so using bi- instead of di- in digon would also make heptagons into septagons. In the end it doesn't matter if you understand how this prefixes work.
@jonipaliares54754 жыл бұрын
Awesome video! The formula at the end also shows that the angles inside a spherical triangle will always add up to more than π or 180°.
@jonipaliares54754 жыл бұрын
@@cubing7276 I'm not sure if that's what you meant but, on planar euclidean triangles the angles add up to exactly π and for hyperbolic triangles they add up to less then π.
@dougr.23982 жыл бұрын
Good insight
@calyodelphi1244 жыл бұрын
The most important trick that goes unstated in this, that took me a good ten minutes to figure out, is how the addition of all six lunes gives you the surface area of the sphere plus four triangles: 1. When you add the two alpha lunes, you get just the area of those lunes. 2. When you add the two beta lunes, the areas of those lunes overlap with the areas of the alpha lunes where the triangles are located. So you add the areas of the beta lunes PLUS two areas of the triangle. 3. Same happens with the gamma lunes. You are adding the areas of the two lunes PLUS two areas of the triangles because of overlap. And there you have it. Adding the six overlapping lunes gives you the surface area of the sphere plus four triangles. Just substitute α,β,γ into L(θ)=2θr², do a little algebra, and you get r²(α+β+γ-π)=T
@a13xcube54 жыл бұрын
Thank you so much!
@pvasudev19674 жыл бұрын
I would like to add that the area of alpha lunes also includes the area of two spherical triangles. The area of two triangles has to be added once but is added three times -six times the area of the spherical triangle. So four times the area of the triangle has to be subtracted from the area of lunes to ensure that the area is added only once in order to calculate the area of sphere from the total area of the lunes.
@aaaaaa-rr8xm2 жыл бұрын
basicaly the 4 is 3*2-2 but I dont understand why its 2pi and not 180
@molybd3num8232 жыл бұрын
@@aaaaaa-rr8xm radians
@esterina77722 жыл бұрын
life saver.
@stockimage14374 жыл бұрын
Can’t find this quality anywhere else on KZbin. Keep up the good work 👍
@ThinkTwiceLtu4 жыл бұрын
Thanks for watching :)
@theunknown48344 жыл бұрын
3blue1brown
@randomdude91354 жыл бұрын
H1N1
@mastershooter644 жыл бұрын
gotta say it this guy is pretty good, but 3blue1brown is equally as good if not more so!
@leif10754 жыл бұрын
@@ThinkTwiceLtu What would an angle of zero degrees between two great circles look like then..the same as an angle of 2pi or 360 degrees?..as far as i can tell it would..since either way the circles overlap entirely..
@catapillie2 жыл бұрын
the final formula is... beautiful!
@chrisj79034 жыл бұрын
More great geometry. You've a great knack for leaving each scene up for just the right amount of time for my brain to compute what you just emphasised, and that makes all the difference.
@NonTwinBrothers4 жыл бұрын
Very nicely animated!
@OCEAN_NINJA3 жыл бұрын
I can't think something like this , this so beautiful visualization
@farisakmal27224 жыл бұрын
Your videos are pure eyegasm
@RazieShokri8 ай бұрын
That's literally the best video I have ever seen.
@samaryadav72123 жыл бұрын
I was trying to visualize this from 2 days but the animations awesome I got that at once. THANKS
@mrkhunt.4 жыл бұрын
Great video, that “Aha” moment was at 4:55 to add up and find the equation. 👏👏👏
@ThinkTwiceLtu4 жыл бұрын
Thanks!
@lopkobor69164 жыл бұрын
This proof is so beautiful and simple resulting in an elegant formula that's also beautiful and simple.
@Aditya-khurmi4 жыл бұрын
Wow, your video quality improved a lot! Feeling so good for you.
@ThinkTwiceLtu4 жыл бұрын
Thanks:)
@jacabezaa_40264 жыл бұрын
Great! Now I know how to derive the formula to the area of a spherical triangle!
@ThinkTwiceLtu4 жыл бұрын
:)
@jeedux58044 жыл бұрын
A very nice presentation on the area of spherical triangle. I learned a lot. Tnx
@amaarquadri4 жыл бұрын
Beautiful proof for a beautiful formula!
@rutvikpanchal4664 жыл бұрын
Can you make a playlist of all of your videos so i can listen to the amazing selection of the songs you use, pls. Edit : I'm not saying that i just wanna listen to songs, i love all of your videos, but your selection of songs is just perfect.
@mathemaniac4 жыл бұрын
Great video! I didn't know this before! By the way, in these days, no matter where you are, stay healthy.
@ThinkTwiceLtu4 жыл бұрын
Thank you:)
@samuelgantner46094 жыл бұрын
I was just wondering if someone has stolen Trevor Cheung's Quora profile-pic but then I realized that this is actually you. :)
@lamaspacos Жыл бұрын
The proof come so smooth ❤
@mr_rede_de_stone9164 жыл бұрын
All about this was so desperately beautiful, from the formula itself to the yet quite simple proof and the animation - this was both highly interesting and soothing, with a great timing in the video, pausing long enough to ensure understanding but not to much to keep it fluid. Love it!
@ThinkTwiceLtu4 жыл бұрын
Thanks a lot:)
@avyakthaachar2.718 Жыл бұрын
Awesome animation! Thanks a lot 🙏
@snillor9994 жыл бұрын
I cannot believe how much this makes sense.. Thanks for the awesome graphics and the intuitive explanation. Keep up the great work.
@ThinkTwiceLtu4 жыл бұрын
Thanks, happy to hear that!
@marmikpatel92614 жыл бұрын
Superb quality great video. Top math visualisation channel on KZbin.
@ThinkTwiceLtu4 жыл бұрын
Thanks for watching 😊
@funkysagancat32954 жыл бұрын
OMG THAT WAS FUCKING AMAZING PLEASE KEEP MAKING VIDEOS
@cosimobaldi034 жыл бұрын
Seriously epic, mate. It's a great channel
@ThinkTwiceLtu4 жыл бұрын
Thanks!!
@lucasnahp Жыл бұрын
Thanks for this helpful video
@brucea98712 жыл бұрын
Very interesting video. This is something we never see in high school - formulas in spherical geometry (much less their proof). In fact geometry seems to be somewhat neglected in school in favour of algebra (which may appear to be more pratical and is preparation for calculus). Sure we learned basic facts like the area of a triangle is half the base times the height but in school I always wondered what if we do not know the height? What if we only know the lengths of the three sides (which is much more likely)? It was only many years after high school I discovered Heron's formula; the area of a triangle is the square root of s(s-a)(s-b)(s-c) where a, b, and c are the lengths of the three sides and s = (a + b + c)/2. There are many other fascinating facts about objects as seemingly simple as triangles, such as every triangle has both an incircle (a circle tangent to each side) and a circumcircle (a circle which passes through each vertex). This is not true for polygons in general. Also each of the following three sets of segments in a triangle intersect in a point: 1) the altitudes; 2) the medians; 3) the angle bisectors; 4) the perpendicular bisectors. Then there is Ceva's theorem which shows a connection between the the lengths of the segments cut off on each side by three cevians (a segment drawn from a vertex to an opposite side) passing through a single point. And this is just triangles; there are many other fascinating facts about polygons and geometry, spherical geometry, and three dimensional geometry. Another topic neglected in high school is number theory. There are many fascinating facts about the integers and certain sequences of integers (such as the Fibonacci sequence) and some very interesting but unsolved problems (such as whether there are an infinite number of twin primes and the Collatz conjecture).
@catherinebuhat36574 жыл бұрын
GREAT VISUALS! SUBSCRIBED
@Gamma_Digamma3 жыл бұрын
Excellent you saved my neck thanks...
@msolec20004 жыл бұрын
Angular excess times radius squared. Very nice explanation!
@ThinkTwiceLtu4 жыл бұрын
Thank you 😊
@quantumcity66794 жыл бұрын
You're work is excellent..... Good job
@quantumcity66794 жыл бұрын
😂......ohh... I didn't see that....thanks for *tailling* me
@AntoCharles4 жыл бұрын
Good 👏 Quarantine👏 Content👏 All jokes aside awesome job :D
@ThinkTwiceLtu4 жыл бұрын
Thanks 😊
@andreyzyablikov98914 жыл бұрын
I do not speak English (greetings from Russia), if only a little bit, but your videos are understandable, because you speak immediately in 3 truly international languages, these are Music, Beautiful and Clear Visualization and Mathematics! Thank you very much for your wonderful videos!
@ThinkTwiceLtu4 жыл бұрын
Спасибо)
@1996Pinocchio4 жыл бұрын
3blue1brown supports Think Twice, I think that's adorable.
@MrPinknumber4 жыл бұрын
I love these videos, it makes it so much easier to understand. Great work, keep it up :)
@anushrao8824 жыл бұрын
Excellent video as always.
@ThinkTwiceLtu4 жыл бұрын
Thank you!!
@girishgarg28164 жыл бұрын
Having to get sit at home and watch your videos. Pure bliss!
@alejrandom65926 ай бұрын
Nice video, thanks for posting 😊
@gonzalochristobal4 жыл бұрын
great video and beautiful animations!
@ThinkTwiceLtu4 жыл бұрын
Thank you :,-)
@gabrielmello32934 жыл бұрын
Great quality. Keep it up.
@ThinkTwiceLtu4 жыл бұрын
Thanks!
@John_does4 жыл бұрын
Interesting conclusion from that, which is a bit trivial in highnsight, is that every triangle and in extension every polygon on a sphere with non zero area, the sum of it angels is necessary bigger then that kind of polygon on the plane, does this extend to higher dimensions with oclidian spcaes?
@sayamqazi4 жыл бұрын
euclidian *
@richardwolfendale87834 жыл бұрын
This channel is way to underrated, it's much better than other maths channels with millions of subscribers
@hamiltonianpathondodecahed52364 жыл бұрын
-presh talwalker is the first name that comes to the mind-
@That_One_Guy...4 жыл бұрын
*Fresh Toadwalker
@That_One_Guy...4 жыл бұрын
Other than him, there's many good math channel with millon of subscriber that you can try checking out first
@rasoulkhoshravan59124 жыл бұрын
I am sharing this video on my facebook page in order to promote it. Hope this will help.
@duckymomo79354 жыл бұрын
A lot of math channels that really don’t deserve the recognition sure
@rajatchopra58294 жыл бұрын
Wonderful as always👌
@ThinkTwiceLtu4 жыл бұрын
Thanks!
@Binyamin.Tsadik4 жыл бұрын
Beautifully done, love the animations. Keep it up man!
@ThinkTwiceLtu4 жыл бұрын
Thanks!
@52.yusrilihsanadinatanegar794 жыл бұрын
Thanks, i love it
@gbporto97014 жыл бұрын
That was beautiful!! Such a high quality content, thank you!
@ThinkTwiceLtu4 жыл бұрын
Happy to hear that:)
@nagys36snn4 жыл бұрын
real nice video, nice, smooth transitions, clear, decluttered, followable, i loved it!
@ThinkTwiceLtu4 жыл бұрын
Thanks 😊
@Titojune68884 жыл бұрын
Very nice content like it.keep it up
@emanuellopez85784 жыл бұрын
I usually don't watch your vids if I don't know what you're exposing, but I'm gonna watch it all now bc you deserve all the attention you receive and so much more, thanks for this I really appreciate it
@ThinkTwiceLtu4 жыл бұрын
Thanks for the support:)
@MathHacker424 жыл бұрын
Beautiful explanation
@ThinkTwiceLtu4 жыл бұрын
Thank you:)
@nicepajuju39003 жыл бұрын
This is brilliant
@ronaldmorris83903 жыл бұрын
So well done! Kudos. Keep up the great work!
@tiandao1chouqin4 жыл бұрын
Brilliant indeed!
@krishism4 жыл бұрын
Incredible Stuff! I loved the presentation.
@ThinkTwiceLtu4 жыл бұрын
Thank you
@AJLuna282 жыл бұрын
I came into this knowing nothing and feel like I just learned a new language
@sasmitarath43124 жыл бұрын
Incredible. You are maths' makeup artist
@rasoulkhoshravan59124 жыл бұрын
Truly brilliant. When it is explained that the some of areas of 3 lunes are equal to 2 times area of sphere and T. It needs little bit more explanation or I have to watch that part again.
@Naverb4 жыл бұрын
First add the two red lunes. Then add the blue ones... They each overlap one of the red lunes exactly over one of the two green triangles, so we've overcounted by two triangles. Repeat with the yellow lunes, which overlap the red and blue exactly at the two triangles. We have thus overcounted by 4.
@Naverb4 жыл бұрын
Also, it's not that the sum of 3 lines is 2 times the area of sphere + 4T; you have it backwards. It's that 2 times the area of the three distinct lunes is the area of *one* sphere + 4T
@eliyasne96954 жыл бұрын
This is beautiful! The proof i knew to this formula uses the fact that the area is proportional to the total curveture inside the spherical triangle.
@jiaming52694 жыл бұрын
Now, THIS. THIS IS IT.
@txikitofandango4 жыл бұрын
This is nice. But how many degrees of freedom are there among the three angles? Does the third one depend on the other two? Hmm maybe not
@yeast45294 жыл бұрын
These really are some of the most amazing videos on KZbin
@ThinkTwiceLtu4 жыл бұрын
Thank you:)
@joni50284 жыл бұрын
Great Video! Keep up the good work. Wonderful proof thanks to the animations
@ThinkTwiceLtu4 жыл бұрын
Thanks:)
@Invalid5714 жыл бұрын
Your videos are always a joy to watch! 👏 👏 ☺ Keep going, you are an inspiration for all mathematicians/math students! Edit: I especially like the chill lofi music. ☺
@ThinkTwiceLtu4 жыл бұрын
Thank you:)
@tsawy64 жыл бұрын
Ahhh, and on a plane, alpha+beta+gamma would go to pi, making the term inside the brackets go to 0, bit simultaneously, r would approach Infinity!
@ArturHolanda914 жыл бұрын
Well pointed
@brandonklein14 жыл бұрын
Well, this reflects that if we place a planar triangle on a sphere, only 1 point touches the sphere; so we have no area.
@mohammedal-haddad26524 жыл бұрын
Beautiful.
@ThinkTwiceLtu4 жыл бұрын
:-)
@resadavidchannel4 жыл бұрын
Very cool!!
@portr0024 жыл бұрын
Beautiful!
@ThinkTwiceLtu4 жыл бұрын
Thanks:)
@MegaBubbles3604 жыл бұрын
i didn't know how much i needed this video. so pure 🥺
@ThinkTwiceLtu4 жыл бұрын
:')
@Prabhav262 жыл бұрын
👏Great Animation👏. Visualization helps a lot. ❤Keep making such quality content ❤
@vma0114 жыл бұрын
I'm drooling myself. This is beautiful. Loved it!
@ThinkTwiceLtu4 жыл бұрын
Thank you!!
@bastiana.n.42774 жыл бұрын
Great video!
@ThinkTwiceLtu4 жыл бұрын
Thank you 😊
@dylanparker1304 жыл бұрын
beautiful!
@DiegoMathemagician4 жыл бұрын
Pretty cool, I thought that in order to understand the proof of this I was going to need very sophisticated mathematics. I am really grateful because you taught me a lot of hidden gems in geometry.
@luisgcr3 жыл бұрын
Beautiful 🤩
@elnurbda4 жыл бұрын
Спасибо за видео
@lovemath980 Жыл бұрын
Great, thanks so much. How duid u do this animation?
@princesoni72414 жыл бұрын
Please explain visually the infinite sum of natural numbers. Can you do it .
@alpe61274 жыл бұрын
Beautiful video as usual, thanks for uploading! I have a question however, the formula for the Area is: T = r² (a + b + c - pi) The sum of the angles in a triangle equals 180° = pi, so: a + b + c = pi Doesn't that mean that the Area is always 0. (Is it because the sum of the angles of a spherical triangle does not equal pi?)
@Spieder024 жыл бұрын
Yes imagine walking from the equator to the north pole turn 90 degrees and then go down to the equator turn 90 degrees again and go back to the point where you started that triangle has 270 degrees you can have many different numbers bigger or equal to 180 on a sphere
@alpe61274 жыл бұрын
Thanks!
@paultikotin4 жыл бұрын
As others have pointed out, this works because the angles of the spherical triangle sum to more than pi. This means we can do an experiment... Set up a very large triangle where the vertices can all be seen and are visible to an observer located at any vertex. Measure the angles. If the universe is Euclidean, you will always get pi. If space is curved you will only get pi in special cases.
@jeffbezos39424 жыл бұрын
Very impressive
@EmanuelSygal14 жыл бұрын
Captivating and Beautiful, thank you!
@ThinkTwiceLtu4 жыл бұрын
Thanks for watching!
@Louiscypher934 жыл бұрын
Can you do the same for hyperbolic surfaces?
@Starrkgamingy4 жыл бұрын
Galing Naman daming matutunang Tayo dito.. thank you for sharinng
@pool72164 жыл бұрын
It's beatiful. Which software do you use, please?
@ThinkTwiceLtu4 жыл бұрын
Processing and c4d
@pool72164 жыл бұрын
@@ThinkTwiceLtu Thank you.
@김지원-m8q4 жыл бұрын
Why are the sides of triangle only "Great Circle"? Can the sides be any smaller circles?
@quacking.duck.32434 жыл бұрын
It can but it won't be considered a proper triangle anymore, since the only geodesics on a sphere are the great circles. Geodesics are lines which minimize distance, and are defined by the local geometry; in the plane they are straight lines for example.
@thebigoeuph4 жыл бұрын
Very nice video! I am curious though, in the limit of large radius (very little curvature) we should expect that even though the triangle would get very big, does the formula reduce back to good ol bh/2?
@sohanaiyappa3515 Жыл бұрын
Technically a straight line can be a considered as an arc of a circle of radius infinity . So in that way, every 2d triangle is a spherical triangle with the sides being arcs of great circles of a sphere with radius infinity
@alwysrite4 жыл бұрын
just like 3B1B you never dissapoint.
@ThinkTwiceLtu4 жыл бұрын
:))
@pyrokinetikrlz4 жыл бұрын
Interesting to note that the sum of the internal angles of a spherical triangle is NOT pi radians as in the case of the good old plane triangle. The area of the spherical triangle would be zero, according to the equation obtained in this video.
@aymen_sahnoun4 жыл бұрын
Epic
@roy044 жыл бұрын
It took me less time to understand areas of triangles in spherical geometry from this video than I the time I took to understand why Heron's formula (basic euclidean geometry) works from actual math classes
@EdwardNavu4 жыл бұрын
I expected Flat earthers being pissed here, then I realized that Flat earther won't bother to seek knowledge, so they won't be here.
@IsraelIsLikeWater3 жыл бұрын
How would this be useful in proving we inhabit a spherical earth? To actually measure spherical lunes (of they were to exist) wouldn’t be an incredible feat (given the presupposed size/shape of the earth). People could try to get a smaller portion, but they’d be basing it on a presupposition of the radius- their confirmation bias.
@jwpogue4 жыл бұрын
A bit complicated, but an amazing video well explained!
@ThinkTwiceLtu4 жыл бұрын
Thank you:-)
@emidude3 жыл бұрын
1:33 why is 4 pi r^2 / 2 pi = L(a) / a ???
@Nickesponja4 жыл бұрын
Man, these videos are amazing! Could you animate a proof of L'Hopital's rule? I'm sure there has to be a neat visual proof
@keyyyla4 жыл бұрын
This is amazing. May I know which software you use for your animation?:)
@ThinkTwiceLtu4 жыл бұрын
Processing and c4d:)
@AndresFirte4 жыл бұрын
Really beautiful video!! Everything was very understandable but there is just one thing I didn’t quite get: can someone explain how we know the step at 1:34? I mean I think I believe it, it sounds logical, but I can’t understand why it must be true.
@arianearze33557 ай бұрын
In minute 1:36, why is (4 x pi x r squared) divided by 2 pi
@flaviorabelo4 жыл бұрын
Excelent video (once again). One point remains, for me at least: It's no trivial the angle between 2 great circles is the same as the one formed by the the arcs of the spherical triangle. Ie, the "inner angle" is equal the "tangent angle".
@hamiltonianpathondodecahed52364 жыл бұрын
I don't understand your question but isn't the tangent angle itself is the definition of the great circle angle?
@flaviorabelo4 жыл бұрын
@@hamiltonianpathondodecahed5236 The question would be: is the inner angle (the one "touching" the circunference's center) the same as the "tangent angle" (the one tangent to the circunference's surface)? For me, it seems to be, but it's not trivial...
@tzambaprama4 жыл бұрын
yeah! but this assumes that area varies linearly with the angle which we don't now if its true
@juliekrizkova5464 жыл бұрын
Hi, can someone please explain to me, why in 1:33 he divides by 2π? Thanks, btw beautiful as always. :)