How to find the inverse of a 3 by 3 matrix (3 methods you need to know)

  Рет қаралды 53,322

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 183
@aleksgornik
@aleksgornik 3 жыл бұрын
Gaussian elimination sucks, it’s a bit trial and error and if you take the wrong route you go into a black whole and can’t go out of it
@ProfOmarMath
@ProfOmarMath 4 жыл бұрын
It's fun that you're embracing linear algebra
@blackpenredpen
@blackpenredpen 4 жыл бұрын
I am trying! It's been over 14 years that I haven't done any of it, lol. So I am only starting with the computational part first and then I will get into the more conceptual part.
@ranjitsarkar3126
@ranjitsarkar3126 4 жыл бұрын
@Leonhard Euler I am a real big fan of you Mr. Euler. But I cannot subscribe your channel. Because you are faking
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@ranjitsarkar3126 who?
@talentedtobi
@talentedtobi 8 ай бұрын
The last method is Gold. Thanks so much.
@parasgovind6271
@parasgovind6271 4 жыл бұрын
You have the best timing!!! I literally learned this topic a few days back and always complained about how long it takes! Your third method is awesome! Thank you!
@jordimayorgisbert6490
@jordimayorgisbert6490 4 жыл бұрын
I have no idea about the pretty 3rd method !!! Thank you 🙏!! I’ll give it to my students next monday !! Very nice !! (Like the D.I. Integrate method 😉)
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Thanks for liking! Cheers!
@SahilSharma-nh8tr
@SahilSharma-nh8tr 4 жыл бұрын
My teacher already taught me these methods 😎😎😎😎
@megauser8512
@megauser8512 4 жыл бұрын
I like the 3rd method the most too!
@youkaihenge5892
@youkaihenge5892 4 жыл бұрын
When you drew that big matrix for C that face you made was hilarious knowing we all are suffering from the inverse hahaha
@blackpenredpen
@blackpenredpen 4 жыл бұрын
lol, imagine if it was a 4x4 matrix
@puneetmishra4726
@puneetmishra4726 4 жыл бұрын
@@blackpenredpen The third way could work for 4x4 matrix as well?
@virajagr
@virajagr 4 жыл бұрын
@@puneetmishra4726 I guess it will work when n is odd. When n is even, the plus minus sign would mess up.
@egillandersson1780
@egillandersson1780 4 жыл бұрын
The first way is the more "theorically understandable", but the third way is the coolest to perform. Once you have computed the adjugate, you can also ignore the last raw and column and use the centre to compute de determinant (if not previously done). So, an "all in one" method !
@iRam8UnderScore
@iRam8UnderScore 4 жыл бұрын
Sorry do you mean removing the first column and last row? Because that works out, whereas what you mentioned doesn't work. ??
@GreAse0MonKey27
@GreAse0MonKey27 5 ай бұрын
the last method is the life saver!!! :))
@MA-bm9jz
@MA-bm9jz 4 жыл бұрын
Another method would be from the characteristic polynomial,by writting A^(-1) as a linear combination of A and A^2
@wduandy
@wduandy 4 жыл бұрын
How?
@MA-bm9jz
@MA-bm9jz 4 жыл бұрын
@@wduandy so a 3×3 matrix has a characteristic polynomial like this A^3+a_1*A^2+a_2*A+a_3*i=0 ,multiply by A^(-1) and we get A^2+a_1*A+a_2*i+a_3*A^(-1)=0 and from there you get A^(-1)
@SimonClarkstone
@SimonClarkstone 4 жыл бұрын
@@MA-bm9jz How do you find a_1, a_2, a_3?
@MA-bm9jz
@MA-bm9jz 4 жыл бұрын
@@SimonClarkstone you compute the characteristic polynomial,det(A-x*i),but since A is a 3×3 -a1 is the trace(since the sum of the eigenvalues is the trace),-a3 is the determinant(product of eigenvalues),all those observations come from vieta's formula,a2 is a bit more tricky,is the sum of all 2nd degree diagonal minors,or just compute det(A-x*i) and those a_i will come naturaly
@SimonClarkstone
@SimonClarkstone 4 жыл бұрын
@@MA-bm9jz I don't know enough linear algebra to understand that unfortunately.
@tomatrix7525
@tomatrix7525 3 жыл бұрын
Peyam - Funniest math teacher. Bprp - Coolest math teacher.
@farkasmaganyos
@farkasmaganyos 4 жыл бұрын
I really appreciated the 3rd version! Many thanks for that!
@MrKA1961
@MrKA1961 3 жыл бұрын
Szerintem is ez a nyerő.
@dookey6099
@dookey6099 4 жыл бұрын
I just finished this topic in school , finding the inverse of 3x3 is such a pain for me because I always make stupid arithmetic blunders. Just got to be careful
@jeffayako
@jeffayako 4 жыл бұрын
i love the last one u make it look really easy i will try writting a CPP code to compute the inverse using that algorithm
@TobyBW
@TobyBW 4 жыл бұрын
Watching this while doing my linear algebra homework on inverse matrices
@tomatrix7525
@tomatrix7525 3 жыл бұрын
Ditto
@geosalatast5715
@geosalatast5715 4 жыл бұрын
There's a guy with a goat beard who holds a pokeball, has the Picasso painting The Scream and is talking about matrices... Pure Excellence! Greets from Greece!
@ytsimontng
@ytsimontng 4 жыл бұрын
And runs Marathons 🇬🇷
@KN-tt7xu
@KN-tt7xu 4 жыл бұрын
That 3rd method is actually very useful, thank you for showing that
@21croz
@21croz 4 жыл бұрын
I have an Algebra exam next week, really appreciate these videos you are uploading. Greetings from Chile!
@SwordQuake2
@SwordQuake2 4 жыл бұрын
The second method is best. You won't need to calculate the determinant separately if you don't have it.
@AlfredPros
@AlfredPros 4 жыл бұрын
That last trick is so cool! I wish my lecturer taught me about it!
@DarthJeremy364
@DarthJeremy364 Жыл бұрын
please note i do not think the last method applies to matrices greater than 3 x 3
@XgamersXdimensions
@XgamersXdimensions 4 жыл бұрын
I took Linear Algebra over the summer (and passed!) but I’ve never seen the 3rd way! Very useful and would have saved me a lot of time
@mmh2695
@mmh2695 2 жыл бұрын
This video is so good, now I'm ready for tomorrow's exam, thx a lot
@nationalstudyacademykim5030
@nationalstudyacademykim5030 4 жыл бұрын
As a HS math tutor, you are very entertaining!
@dr.rahulgupta7573
@dr.rahulgupta7573 3 жыл бұрын
Sir I found 3'rd method the best .Congratulations for it .DrRahul Rohtak Haryana India
@pedrokalume2473
@pedrokalume2473 4 жыл бұрын
One more reason to start watching bprp is that he is now making Linear Algebra videos
@trueriver1950
@trueriver1950 4 жыл бұрын
Fourth way: apply the BPRB technique but the second matrix is not the unit matrix but this: Det 0 0 0 Det 0 0 0 Det This gives you the transpose matrix in the second example. Remember to divide the integer matrix you get by the determinant of the original. You can either divide each element, or just write a scalar multiple of (1/Det A) in front, depending what you are about to use the matrix for. This offers an insight about why there is no inverse when Det = 0 because you'd be dividing by zero... I prefer this fourth way
@drpeyam
@drpeyam 4 жыл бұрын
Woohoo, I’m inverse ready 😇
@vishwanraja666
@vishwanraja666 4 жыл бұрын
do you play the sims ?
@trueriver1950
@trueriver1950 4 жыл бұрын
This technique applies to any sized matrix with an inverse. It is the matrix algebra equivalent of doing simultaneous equations as usually taught to students before they meet matrices.
@aravinds3846
@aravinds3846 4 жыл бұрын
Another way to find inverse is by using Cayley-Hamilton Theorem, which gives |A -λ I | = 0 , where I is a unit matrix. When we evaluate this determinant we get an equation of degree n , where n is the order of A. The equation is in terms of λ, so replace it with A. Voila! we get an equation with variables being the matrix and constant is the unit matrix. Multiply by A inverse and get simplify the rest o the terms to evaluate A inverse
@chunfaimok767
@chunfaimok767 4 жыл бұрын
I am actually looping 9:40,13:42,15:40 those charming laughter
@BCS-IshtiyakAhmadKhan
@BCS-IshtiyakAhmadKhan 3 жыл бұрын
The method used in the thumbnail was already taught by my teacher last year
@SHASHANKRUSTAGII
@SHASHANKRUSTAGII 4 жыл бұрын
Unfortunately, I knew this before u could upload this, but it is always love to see you. PS: You and Quang Tran look alike And I love you both. One for Maths One for Mukbangs
@holyshit922
@holyshit922 Жыл бұрын
a_{n}=1 a_{m}=-1/(n-m)(sum(a[j+m]tr(A^{j}),j=1..n-m)) This will give you characteristic polynomial and from Cayley Hamilton we will get the inverse This is not as fast as elimination but faster than cofactor method
@francine8563
@francine8563 3 жыл бұрын
thank you so much sir, you made it look easier! I just want to ask a question, regarding the 3rd way 24:30, can I use it still when solving for determinants with 4 x4 or more matrix?
@sugarfrosted2005
@sugarfrosted2005 4 жыл бұрын
The adjugate is good for rings without inverses because it always works. Though it might not be a real inverse, but good enough in a lot of places.
@ItsMeTheUser
@ItsMeTheUser 11 ай бұрын
3nd way is very clever, thanks Steve!
@rezamiau
@rezamiau 4 жыл бұрын
Great! but in the second method, you could use Cofactor Matrix to evaluate Determinant easily! so I think the second method is much more faster than the first one.
@daphenomenalz5784
@daphenomenalz5784 4 жыл бұрын
Great video...actually Today i was trying to find some more ways to calculate the inverse of a matrix and you helped me a lot. thank you...but now I'm wondering how to compute inverse of a (n by n) matrix where, n is any unknown positive integer Please share how to do this
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Thank you for you comment. I think, unfortunately, once we get a bigger matrix, we have to use either method 1 or method 2..
@saurabhin
@saurabhin 4 жыл бұрын
I know all of the method. But, i like your way of teaching ♥️
@chawkichalladia1812
@chawkichalladia1812 4 жыл бұрын
i remember being good at matrix in college. i remember doing that second method. this was more than 5 years ago. the only chapter that gave me hope of being good at math xD
@DilipWoad
@DilipWoad 4 жыл бұрын
All the method i was knowing 😅 but i love...i taught u might have other shortcut .....the 3rd is my favourite i use it every time its easy
@lesnyk255
@lesnyk255 4 жыл бұрын
I think I like method #3 the best for manual longhand calculation, but #2 as the easiest to program..
@coleabrahams9331
@coleabrahams9331 4 жыл бұрын
I always used to use the second matrix. Thx for this
@TechnoCoderz369
@TechnoCoderz369 Жыл бұрын
Thank you Very much!
@jordimayorgisbert6490
@jordimayorgisbert6490 4 жыл бұрын
I’ve a little "improve", making the T operation over the A matrix at the first, and then work with it. You'll avoid the final arrangement for making the T. I'm based on the property Adj(A^T) = (Adj(A))^T. That's only a suggest !! ;-)
@angelxd7019
@angelxd7019 4 жыл бұрын
Gracias por compartir sus conocimientos maestro redpen 💪🙌
@archerdev
@archerdev Жыл бұрын
matrices bless you man, thanks for this dead cool video. Much appreciated
@wanlitan7406
@wanlitan7406 4 жыл бұрын
24:25: "It's not a new way" Title: "Inverse of a 3 by 3 matrix (3 ways)"
@shunmugasathishk9365
@shunmugasathishk9365 3 жыл бұрын
The 1st method that you've done is Gauss-Jordan method
@redstoneplayz09
@redstoneplayz09 4 жыл бұрын
I don't even know linear algebra but I am watching this because it seems smart.
@jackkalver4644
@jackkalver4644 2 ай бұрын
Fun fact: Inverses can be found vertically using column operations.
@AttilioPitt
@AttilioPitt 4 жыл бұрын
This is AMUUUSING! thank you! i love this trick
@6754bettkitty
@6754bettkitty 4 жыл бұрын
You should cover pseudo-inverses!
@yuliiavideo
@yuliiavideo 4 жыл бұрын
The third way is excellent. May I teach my students this method?
@tayserbinjafor7697
@tayserbinjafor7697 2 жыл бұрын
It's not adjugate, it's just adjoint.
@Olavotemrazaodenovo
@Olavotemrazaodenovo 4 жыл бұрын
Congratulations from Brazil.
@nickk4125
@nickk4125 4 жыл бұрын
The last one really made me happy
@abhisheksharmavats8326
@abhisheksharmavats8326 4 жыл бұрын
3rd is nice
@therealgoat3367
@therealgoat3367 9 ай бұрын
"6 - 2 is... Why is that so hard?"...FELT!!!!
@francine8563
@francine8563 3 жыл бұрын
i like the 3rd way the most
@rocksbit
@rocksbit 6 ай бұрын
Superb video brother
@alexnoussi
@alexnoussi 11 ай бұрын
The 2nd way is familiar, and the third one is rather peculiarly interesting.
@bbbeware
@bbbeware 4 жыл бұрын
just happen to be taking linear right now so thanks for uploading! w00t w00t
@arnaldosantoro6812
@arnaldosantoro6812 4 жыл бұрын
11:00 "either you like it or you hate it" Clearly hates it
@l3igl2eaper
@l3igl2eaper 4 жыл бұрын
I've always loved method two.
@sabriath
@sabriath 4 жыл бұрын
I feel like a form of cryptographic key could be constructed with matrixes somehow.....maybe this will inspire me for the next week.
@vinayaktyagi1001
@vinayaktyagi1001 4 жыл бұрын
He : inverse of a matri- Me : *adj(A) / |A|* Adjugate ? I learned it as adjoint . Well both are same anyways so doesn't really matter
@Sergeak21
@Sergeak21 4 жыл бұрын
WHATTT the third way is actually witchcraft. I have been wasting my time doing the second-way smh.
@ose31
@ose31 4 жыл бұрын
Very good...👏👏👏👏👏👏from Brazil...
@AttilioPitt
@AttilioPitt 4 жыл бұрын
The last method is very beautiful for optimazing the inverse. I really want to use it in an exam, but i think that i need to demostrate it. Could you please help me, please? Thx
@TranquilSeaOfMath
@TranquilSeaOfMath Жыл бұрын
Good presentation !
@mathieus-c6761
@mathieus-c6761 3 жыл бұрын
"dididididida" (delete this, delete that) Love ur vids, keep going on !!
@bsb0
@bsb0 4 жыл бұрын
I wish I watched this video yesterday. before my linear algebra final😂
@trueriver1950
@trueriver1950 4 жыл бұрын
If you have a prime determinant, you usually end up with that as the denominator of a fraction in at least one row. If you have a compound determinant, you could have that as the denominator in one row, or you could choose to have fractions in different rows whose denominators multiply to that number. There are occasional exceptions to both the above.
@virajagr
@virajagr 4 жыл бұрын
Can you do proof for second method? Thank you
@smrtfasizmu6161
@smrtfasizmu6161 4 жыл бұрын
3rd method is great. To me, second method is way worse then the first one because it is a lot harder to compute and it is harder to understand why it gives you the correct result in the first place
@omshandilya8888
@omshandilya8888 4 жыл бұрын
2020 raise to the power 2019 - 2020 divided by 2020 square + 2021=N then find the sum of digits of n bro plz solve this?? trying from last 5 weeks
@megauser8512
@megauser8512 4 жыл бұрын
Is that the same as N = 2021 + [ (2020^2019) - 2020 ] / 2020^2?
@pauljackson3491
@pauljackson3491 4 жыл бұрын
For the 3rd method, the crossed out -4 is only used for the det. now? And can you actually start anywhere but 1,1 (where the -4 is) is easiest?
@thomaskim5394
@thomaskim5394 4 жыл бұрын
Data science is very popular now and data science requires linear algebra. So, it is good time to learn linear algebra.
@laurensiusfabianussteven6518
@laurensiusfabianussteven6518 4 жыл бұрын
The sad part is i see this when i already completed my linear algebra course :'
@legendarytaj2054
@legendarytaj2054 4 жыл бұрын
Way 3 is better if you have the determinant if not then gotta go with way 1.
@higgs_boson2231
@higgs_boson2231 4 жыл бұрын
You should do topology or abstract algebra!
@debilista
@debilista 9 ай бұрын
21:00 MAH PROFESSOR IS GONNA MELT LOL
@atharvasharma3492
@atharvasharma3492 4 жыл бұрын
Love your videos man❤️
@virajagr
@virajagr 4 жыл бұрын
Can the 3rd method be extended for higher order matrices as well? That is, copy first 3 columns and rows for 4×4 instead of 2 which is for 3×3. And then take determinant for each 3×3 matrices formed inside
@ShinichiKudou2008
@ShinichiKudou2008 4 жыл бұрын
I think that will work for sizes of an odd number (but not even number) because when a column in a square matrix of size of an odd number is shifted to the opposite end the determinant doesn't change sign.
@virajagr
@virajagr 4 жыл бұрын
@@ShinichiKudou2008 ah that makes sense, thanks
@mduya6239
@mduya6239 4 жыл бұрын
很久沒看你影片了,怎麼突然留鬍子了XD
@k_silentstorm9611
@k_silentstorm9611 4 жыл бұрын
dude thanks so much perfect timing
@sambhav2727
@sambhav2727 4 жыл бұрын
I have a doubt on characteristic equation of a matrix..For a 3x3 matrix A , we know that sum of eigenvalues = trace of A(sum of diagonal elements of A), and product of eigenvalues= determinant of A..For a 3x3 matrix,is there any significance of sum of product of eigenvalues taken 2 at a time? (i.e. (coeff of A) )
@Mr_flewis
@Mr_flewis 4 жыл бұрын
Plz answer this question Q- integral of 2x^2.dx divided by (x-1) (x-2) (x-3)
@davidgendron6955
@davidgendron6955 4 жыл бұрын
Try partial fractions.
@Mr_flewis
@Mr_flewis 4 жыл бұрын
@@davidgendron6955 yes I applied that formula but
@Mr_flewis
@Mr_flewis 4 жыл бұрын
Here 3 algebraic functions are present how can i solve?
@hareecionelson5875
@hareecionelson5875 7 ай бұрын
thanks to this video I have coded an nxn inverse calculator in python. The determinant function was the trickiest, since it's recursive.
@noelsiony6265
@noelsiony6265 4 жыл бұрын
Needed this
@ranjitsarkar3126
@ranjitsarkar3126 4 жыл бұрын
Can you please show a way to turn an infinite product into an infinite sum...... Basically I wanna know a relation between f(x) and g(x) so that (∑ [g(n)] as n=k to ∞)=(∏ [f(q)] as q=c to ∞)
@SimonClarkstone
@SimonClarkstone 4 жыл бұрын
Wouldn't that be g(n) = log(f(n)) ? There are quite a few caveats, but that's got to be the stratergy in the general case.
@ranjitsarkar3126
@ranjitsarkar3126 4 жыл бұрын
@@SimonClarkstone no that would not work .......you can try yourself .. In order for g(n)=log(f(n)) to work You have to take the log of both sides which isn't shown in the equation.
@SimonClarkstone
@SimonClarkstone 4 жыл бұрын
Ah, you're right; my idea would require an extra log outside the Π. Sorry about that. There are an infinite variety of functions g(x) that could satisfy it for any f(x). For example: g(n) = [ the correct product when n = k [ 0 for all other n
@ranjitsarkar3126
@ranjitsarkar3126 4 жыл бұрын
@@SimonClarkstone at first I also thought that g(n)=log(f(n)) would be a solution to my question...then later I realized that it is not. Actually I want an expression for g(x) in terms of f(x) ..so that if I have a product and I need to turn it into a sum,I can just substitute the expression.....and samely of I need to turn a sum into a product ..I can just substitute the expression for f(x) in terms of g(x).
@welllll...ok...
@welllll...ok... 4 ай бұрын
Love the humour! You thought that was it... no!
@tamarpeer261
@tamarpeer261 4 жыл бұрын
It's the same matrix as the o e for the determinant trick. Is it special?
@alihamad5246
@alihamad5246 2 жыл бұрын
Cayley-Hamilton Theorem go brrrrr!
@analog_dreamer
@analog_dreamer 4 жыл бұрын
Just when I need it ❤😭
@matteo23battini
@matteo23battini 4 жыл бұрын
I like the fact that you are bringing linear algebra to your channel but I hope you will focus more on theory, definitions and theorems (with proofs) and not just doing pretty standard exercises
@JRO512
@JRO512 4 жыл бұрын
PLEASE DO LINEAR ALGEBRA PROOFS! I need some enlightening or else I’ll fail my class
@drpeyam
@drpeyam 4 жыл бұрын
I have lots of playlists of linear algebra proofs in case you’re interested
@VJ-dv4ub
@VJ-dv4ub 4 жыл бұрын
pure brain juice Thank you very much sir bye the way awesome beard sir
@hrishikeshdube
@hrishikeshdube 4 жыл бұрын
Hey man.! It's 2.30 In INDIA now
@rashipplaha1203
@rashipplaha1203 4 жыл бұрын
I was watching the live calc test yesterday till 4:30 am and i had a class on 8😂😂
@krish1349
@krish1349 4 жыл бұрын
So what?
How to find the inverse of a 3 by 3 matrix (the fast way)
6:02
bprp math basics
Рет қаралды 10 М.
How to Solve Weird Logarithm Equations
9:34
blackpenredpen
Рет қаралды 248 М.
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 5 МЛН
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 2,9 МЛН
Twin Telepathy Challenge!
00:23
Stokes Twins
Рет қаралды 80 МЛН
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 48 М.
Find the Inverse of a 3x3 Matrix Using Row Operations and an Augmented Matrix
10:48
Inverse Matrices and Their Properties
12:00
Professor Dave Explains
Рет қаралды 526 М.
Inverse of a 3x3 Matrix - (THE SIMPLE WAY)
15:14
IQ Initiative
Рет қаралды 483 М.
Matrix Inverse by Elementary Row Operations
11:35
Prime Newtons
Рет қаралды 9 М.
BELIEVE IN ALGEBRA, NOT CALCULATOR
7:56
blackpenredpen
Рет қаралды 1,1 МЛН
Find the Inverse of a Matrix (Calculate Inverse Matrix)
50:41
Math and Science
Рет қаралды 31 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 1,7 МЛН
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН