Intro to Kernel Density Estimation

  Рет қаралды 156,900

webel od

webel od

Күн бұрын

Пікірлер: 132
@n.sabriozturk6520
@n.sabriozturk6520 6 жыл бұрын
Finally here I found a super video that explains briefly and clearly what Kernel Density Estimation is. Thank you so much.
@webelod4999
@webelod4999 6 жыл бұрын
Thanks man. Glad the video was of help :)
@jasonhe6947
@jasonhe6947 5 жыл бұрын
I love this tutorial, the pace, example, and visualization are just so great
@matematikce9490
@matematikce9490 9 ай бұрын
Clean, on the the point, good theory/practice ratio. Very much appreciated, thanks.
@peterstanbridge3871
@peterstanbridge3871 3 жыл бұрын
Thank you so much for this presentation - first time I've been able to even begin to understand this at an overview level.
@webelod4999
@webelod4999 3 жыл бұрын
Awesome! Thanks for leaving the nice comment :)
@XY-yg1ci
@XY-yg1ci 8 ай бұрын
so straightforward explanation. understand kernel in the first 2 mins
@AnonymPlatypus
@AnonymPlatypus Ай бұрын
Literally within the first 10 seconds, you covered what my lecturer tried to say in 2 hours, and I am paying 45k in tuition!!! (I'm not rich, I'm just heavily indebted, but I am too cowardly to overcome societal pressures of attending a "prestigious" college. Absolutely crushing my mental health)
@PianoMan333
@PianoMan333 2 жыл бұрын
Great video. I found this topic rather abstract but this makes it a lot clearer. Thank you!
@zyflying
@zyflying 2 жыл бұрын
Really great intro, briefly and straight to the point
@yunfenghu3786
@yunfenghu3786 5 жыл бұрын
Thanks Tommy for this amazing video. I am a visual person and this video gives me a clear view of how density kernel works in 1D and 2D using graphs. Your visualization for norms in higher dimension was fantastic. I will use recommend it to my students in the future!
@webelod4999
@webelod4999 5 жыл бұрын
Thanks! I appreciate it!
@okokpk123123
@okokpk123123 2 жыл бұрын
Thank you for your presentation.It is really briefly and clearly.It really helps a lots.Hopes you can share more presentation!
@webelod4999
@webelod4999 2 жыл бұрын
Thanks! The success (in terms of views) on this video inspires me to create more.
@aaronlin8785
@aaronlin8785 2 жыл бұрын
Amazing video Tommy. I couldn't understand KD in a week of Uchicago lectures and you did it in about 45 seconds.
@carl416
@carl416 4 жыл бұрын
Relatively clear exp, good. Visuals really make the difference.
@michaeljagdharry
@michaeljagdharry 4 жыл бұрын
you are amazing, that was one the clearest explanations of a nonstandard statistical concept I have ever seen
@webelod4999
@webelod4999 4 жыл бұрын
Thanks!
@ukvaishnav
@ukvaishnav 3 жыл бұрын
Thanks for making this video. Its concise and quick guide to KDEs.
@ali-kadar
@ali-kadar 5 жыл бұрын
Thank you a ton for the very clear and concise explanation. I like that you go into some algorithmic details nearing the end of the video.
@luismisanmartin98
@luismisanmartin98 3 жыл бұрын
This video is absolutely precious! Thank you Tom for taking the time to create this
@webelod4999
@webelod4999 3 жыл бұрын
Glad you liked it. So happy to get positive feedback, since it took some time to create.
@IroXtreme
@IroXtreme 10 ай бұрын
Great video, clear and concise - thanks!
@nengjingding5942
@nengjingding5942 4 жыл бұрын
Finally found a video to get a rough but clear idea what KDE is. Highly recommend!
@barnabyinteractive
@barnabyinteractive 2 жыл бұрын
super well made couldnt ask for anything better lol
@Scoutik997
@Scoutik997 2 жыл бұрын
This is a very clear explanation of KDE, good job
@timuryalta
@timuryalta 6 жыл бұрын
This deserves much more views!
@nakko3017
@nakko3017 3 жыл бұрын
Thanks for the very clear explanation. ありがとうございます
@webelod4999
@webelod4999 3 жыл бұрын
どういたしまして ! (I used Google Translate)
@pcenxyz1838
@pcenxyz1838 4 жыл бұрын
Sir thanks for the explaination.Very well explained actually I came here with zero knowledge. Thanks for the explanation and I will definitely use KDEpy in my projects...thanks for saving the day
@rajanalexander4949
@rajanalexander4949 2 жыл бұрын
Clear visualisations, succinct and lucid explanations -- fantastic video. Thanks!
@marcelsa5191
@marcelsa5191 2 жыл бұрын
Extremely good video! Well explained and nice graphics. Thank you and greetings from Oxford :)
@webelod4999
@webelod4999 2 жыл бұрын
Many thanks!
@ummesalmamofficial7637
@ummesalmamofficial7637 3 жыл бұрын
Thank You Sir for explaining KDE in a simple way.
@tymothylim6550
@tymothylim6550 3 жыл бұрын
Thank you very much for this video! It was very easy to understand (although this topic is still quite new to me). The use of graphs helps a lot with the explanations!
@samuelfischer5131
@samuelfischer5131 3 жыл бұрын
This is awesome. Thank you for this overview!
@RajeshSharma-bd5zo
@RajeshSharma-bd5zo 4 жыл бұрын
Beautifully explained!!
@tgwashdc
@tgwashdc 4 жыл бұрын
Short, sweet and perfect!
@singlebinary
@singlebinary 5 жыл бұрын
Excellent video and clear explanation. Please keep making more!
@NoorullahYousuf
@NoorullahYousuf Ай бұрын
loved the value you provided! subscribed :D
@delinyahkoning6882
@delinyahkoning6882 Жыл бұрын
What a nice video this is! Super clear.
@Ariel-px7hz
@Ariel-px7hz 2 жыл бұрын
Excellent video. Thank you!
@snehagaikwad2655
@snehagaikwad2655 5 жыл бұрын
Thank you so much for the video! It was easy to understand conceptually!
@JayPatel-et4vi
@JayPatel-et4vi 5 жыл бұрын
Best video for KDE
@martinwutke3386
@martinwutke3386 3 жыл бұрын
Thanks for this very good explanation. Will definitely look into your library. Best Wishes
@webelod4999
@webelod4999 3 жыл бұрын
Glad it was helpful!
@rhodesengr
@rhodesengr Жыл бұрын
Thanks for this video. It makes the concept very clear. Other videos, not so much. I have an application where I would like to use 2D KDE on data sets that are set of point on an xy plane. My goal is to fit a 2D Gaussian to the data and then compare goodness of fit for different data sets. I believe I first need to generate a density function for the data and then fit the Gaussian to the density function. KDE looks like a good way to generate the density function. I would prefer to do this in Excel so an Excel plugin would be ideal. I am not really setup (or proficient) to do regular programming in Python, C, or whatever.
@aman.bansal
@aman.bansal Жыл бұрын
Thank you for making this helpful video.
@ZinzinsIA
@ZinzinsIA 2 жыл бұрын
Very nice, even if i did not get the part about the linear binning and what it is exactly
@ZinzinsIA
@ZinzinsIA 2 жыл бұрын
And very nice for the library btw !
@stephengargan3907
@stephengargan3907 Жыл бұрын
super informative, nice job!
@webelod4999
@webelod4999 Жыл бұрын
Thank you!
@lifestoriesfromearth6271
@lifestoriesfromearth6271 5 жыл бұрын
Thank You Tommy for this wonderful explanation. :-)
@Brumor
@Brumor 11 ай бұрын
Great video, thanks!
@alejozen3457
@alejozen3457 4 жыл бұрын
Great explanation. Thank you for the effort.
@bernardoamorim9182
@bernardoamorim9182 4 жыл бұрын
amazing tutorial, thank you very much for the video and the library :)
@bean217
@bean217 9 ай бұрын
9:50 why is the sum only normalized by 1/(h^d) and not 1/(N * h^d) ?
@pranavkumar9782
@pranavkumar9782 3 жыл бұрын
Is it possible to sample from the KDE after fitting, either in sklearn or KDEpy, apart from the usual method of going to a point x_i and sampling from N(x_i, h) if the kernel is Gaussian in the KDE ?
@webelod4999
@webelod4999 3 жыл бұрын
Not that I know of. You could use the Inversion method and the CDF of the returned PDF, but "the usual method" that you mention is equivalent to sampling from the PDF.
@himanshudalai1028
@himanshudalai1028 5 жыл бұрын
Thank you so much for the video. Loved it.
@powerchucho007
@powerchucho007 4 жыл бұрын
Thanks a lot. Great explanation!
@qwqsimonade3580
@qwqsimonade3580 3 жыл бұрын
thanks for the dedicated video
@TroelsMouritzen-m6g
@TroelsMouritzen-m6g Жыл бұрын
Great visualizations
@gekkejunior3262
@gekkejunior3262 3 жыл бұрын
Clear. Thank you a lot!
@juandavidcaicedoms7686
@juandavidcaicedoms7686 6 жыл бұрын
Thnks for this video! It’s a really good explanation, super helpful!
@webelod4999
@webelod4999 6 жыл бұрын
Thanks man, I appreciate it!
@khubaibraza8446
@khubaibraza8446 4 жыл бұрын
Thank you so much, Super clear explanation.
@aparnamuralidhar5413
@aparnamuralidhar5413 2 жыл бұрын
Hello there. I tried using your KDE package for my work. Used FFT KDE. When i was trying to evaluate the model with some data-i got an error-'Every data point must be inside the grid" . could you elaborate on this,please?
@webelod4999
@webelod4999 2 жыл бұрын
If you have a data point at 0, say, and you grid ranges from 1 to 5, then you will get this error. The data point is outside of the grid. Best to let KDEpy create the grid for you. It automatically sets up a reasonable grid.
@rajm3496
@rajm3496 5 жыл бұрын
genius...happy that I found this :-)
@Abafoteq-Ltd
@Abafoteq-Ltd 4 жыл бұрын
Wow..... wonderful. thank you so much. this was indeed very helpful.
@webelod4999
@webelod4999 4 жыл бұрын
Glad it was helpful!
@NadavBenedek
@NadavBenedek Жыл бұрын
Great audio quality
@webelod4999
@webelod4999 Жыл бұрын
Thanks. For anyone curious, the microphone I use is Audio Technica AT2020 USB+
@makimakiwii
@makimakiwii 5 жыл бұрын
Very helpful. Thank you so much!
@chenghungchou9521
@chenghungchou9521 2 жыл бұрын
Amazing easy to understand!!!!!!!!
@laxmanbisht2638
@laxmanbisht2638 3 жыл бұрын
precisely explained
@h-hugo
@h-hugo 4 жыл бұрын
Very nice lecture!
@giuliofederico7638
@giuliofederico7638 3 жыл бұрын
Perfect explanation
@jeffreychong3467
@jeffreychong3467 Жыл бұрын
Watched about 10 videos, only this one clicked for KDE.
3 жыл бұрын
Sorry for the dumb question but why in the first formula X is subtracting Xi? What it does mean?
@webelod4999
@webelod4999 3 жыл бұрын
If I have a function f(x), then subtracting 2 will shift the function. So f(x-2) shifts the function to the right by 2. When we subtract the data point x_i, we shift the kernel function so it lies "on top" of that data point.
3 жыл бұрын
@@webelod4999 Thank you very much 🙌🙌🙌
@Colegial24
@Colegial24 5 жыл бұрын
Excellent video! Extremely helpful!
@raduiulia4034
@raduiulia4034 4 жыл бұрын
Amazing video!
@nassehk
@nassehk 5 жыл бұрын
What a great video. Thank you.
@teresaebernardo
@teresaebernardo 3 жыл бұрын
Does the size of the grid make a difference?
@webelod4999
@webelod4999 3 жыл бұрын
Yes. The finer the grid, the better the results. In KDEpy the default is 1024 grid points.
@diwakarns1600
@diwakarns1600 4 жыл бұрын
Thank you..I did not understand what a norm is, can you explain a bit more on that? Thank you!
@webelod4999
@webelod4999 4 жыл бұрын
It's basically a measure of distance. A generalization of abs(x) in one dimension. See Wikipedia :)
@capricacity
@capricacity 5 жыл бұрын
I wish I saw this before completing my PhD. This would have made the process "smoother" get what i mean? HAHA!!!
@zenchiassassin283
@zenchiassassin283 3 жыл бұрын
lol, congrats for your PhD too
@justforsynchtc
@justforsynchtc 3 жыл бұрын
Having to implement this and don't understand the "discrete convolution (possibly by fourier transform)". Any pointers?
@webelod4999
@webelod4999 3 жыл бұрын
Look to wikipedia for information about discrete convolution.
@lilaberkani4376
@lilaberkani4376 3 жыл бұрын
Thank you so much for your video, it helps me a looot
@canmetan670
@canmetan670 5 жыл бұрын
Thanks man. Great video.
@abdizinab7934
@abdizinab7934 4 жыл бұрын
Thanks you some much, please Can you sent me the programs of all those representations
@zahrahsharif8431
@zahrahsharif8431 4 жыл бұрын
Hi, how would you interpret a kde if the x axis is probability and the y axis is density?
@webelod4999
@webelod4999 4 жыл бұрын
As a prior distribution in Bayesian statistics.
@shivshankarkeshari6604
@shivshankarkeshari6604 4 жыл бұрын
4.07- 4.14 how can I do similar in my py project?
@richardtarbell946
@richardtarbell946 3 жыл бұрын
This is king shit right here.
@nallakrishna8796
@nallakrishna8796 Жыл бұрын
finally, i found an amazing lecture on kernel density estimation thanks a lot . but i have one query how it can be used to find the anomaly detection. sir can u please make one lecture about this topic otherwise can u please recommand me some good references for KERENEL DENSITY ESTIMATION FOR ANOMALY DETECTION
@cendradevayanaputra7150
@cendradevayanaputra7150 2 жыл бұрын
do you have review of Density Estimation?
@webelod4999
@webelod4999 2 жыл бұрын
kdepy.readthedocs.io/en/latest/literature.html
@cendradevayanaputra7150
@cendradevayanaputra7150 2 жыл бұрын
@@webelod4999 thank you
@MiroLogie
@MiroLogie 5 ай бұрын
Thanks for the video, what you used to do the plots BTW
@webelod4999
@webelod4999 5 ай бұрын
This is a nice extension/improvement! I considered looking at moves too, but determined that (1) getting and preprocessing the data and (2) potentially optimizing over both pokemon and moves would be too much work for a weekend project. If anyone wants to take this even further, I think your ideas are good. At the end of the day the most interesting thing might be to train a reinforcement learning algorithm (like alphago / alphazero et al), but that would be a lot of work!
@canernm
@canernm 5 жыл бұрын
Thanks for the video ! Quick question, are the kernel functions probability density functions? I know the fulfull their properties, but is that enough to make them PDFs? Thanks in advance.
@webelod4999
@webelod4999 4 жыл бұрын
They are, yes. If they fulfill the properties, they are PDFs by definition.
@MiroLogie
@MiroLogie 5 ай бұрын
What you used to plot the data ?
@webelod4999
@webelod4999 5 ай бұрын
matplotlib!
@MiroLogie
@MiroLogie 5 ай бұрын
@@webelod4999 thank you
@TheOfficialJeppezon
@TheOfficialJeppezon 6 жыл бұрын
Please make more videos!
@jeanny2852
@jeanny2852 4 жыл бұрын
what is the difference between x and xi?
@webelod4999
@webelod4999 4 жыл бұрын
x is a continuous variable (the domain), while the x_i's are the observations in the sample.
@LeeLeeCode
@LeeLeeCode 5 жыл бұрын
Thank you!
@juheesingh1157
@juheesingh1157 6 жыл бұрын
Very hepful video 😊
@Borzacchinni
@Borzacchinni 4 жыл бұрын
Do you happen to be from Norway?
@realreactteseract6261
@realreactteseract6261 5 жыл бұрын
Amazing, really!!!!
@dayy14
@dayy14 6 жыл бұрын
Thanks a lottttt!!!
@thomasalderson368
@thomasalderson368 4 жыл бұрын
Liked!
@zilezile4942
@zilezile4942 4 жыл бұрын
Good evening everyone, 🔵 Discover now our books and training that we have produced for you on our site. : www.amikour.wordpress.com 🔵 Click here to go directly to our books and training. : amikour.wordpress.com/nos-formations/
@SLee-xj4jn
@SLee-xj4jn 5 жыл бұрын
Best
@jg9193
@jg9193 5 жыл бұрын
Wow...
@43SunSon
@43SunSon 4 жыл бұрын
pika pika
@svendavidsson
@svendavidsson 3 жыл бұрын
Great explanation!
@felipefavadelima
@felipefavadelima 3 жыл бұрын
Thanks for your video! Very well explained.
@webelod4999
@webelod4999 3 жыл бұрын
Glad it was helpful!
@mahadeibnsalam6735
@mahadeibnsalam6735 4 жыл бұрын
Great content!
@songmichaelbai
@songmichaelbai 5 жыл бұрын
Nice tutorial! Thanks!
@ebrahimfeghhi1777
@ebrahimfeghhi1777 3 жыл бұрын
Thank you, great explanations!
Kernel Density Estimation : Data Science Concepts
25:52
ritvikmath
Рет қаралды 30 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Unit #7 Lesson 3: Kernel estimation
14:53
Brian Zaharatos
Рет қаралды 11 М.
In Statistics, Probability is not Likelihood.
5:01
StatQuest with Josh Starmer
Рет қаралды 1,3 МЛН
Point Pattern Analysis Part 5: Kernel Density Estimation
9:18
UF Geomatics - Fort Lauderdale
Рет қаралды 26 М.
Stanford Seminar - Information Theory of Deep Learning, Naftali Tishby
1:24:44
The Histogram and Kernel Density Estimation
25:29
Carlos Fernandez-Granda
Рет қаралды 6 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,2 МЛН
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 340 М.
Bayes theorem, the geometry of changing beliefs
15:11
3Blue1Brown
Рет қаралды 4,6 МЛН
11. Introduction to Machine Learning
51:31
MIT OpenCourseWare
Рет қаралды 1,6 МЛН
KERNEL DENSITY ESTIMATION (KDE) THEORY || Non Parametric Statistical Modelling || Data Science
17:40
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН