(a+b) ^2 = 44+(b-1)*b Therefore 44+(b-1)*b is a full square. (b-1)*b is an even number and is a product of two consecutive numbers. Therefore b=5 and a=3 or b=8 and a=2. Sorry for my English.
@mustafasibic29542 ай бұрын
I have solution 1) Factor: a^2+2ab+b^2=(b+a/2)(1+2a)=44 2) Multiply by 2 (2b+a)(1+2a)=88+a 3) write b in term of a(idk this how to say it) 2b+a= (88+a)/(1+2a) 2b= (88+a)/(1+2a) - a 4b= (176+2a)/(1+2a) - 2a 4b= 1+ 175/(2a+1) - 2a 4) find b values 175=1×175=5×35=25×7 after trying we will find the solutions which is (a,b) = {(2,8),(3,5)}
@SALogics2 ай бұрын
Very nice trick to solve this type of problems! ❤❤
@билал-ж2к2 ай бұрын
Спасибо!!! Чудесное решение!!! ❤
@ericjb10302 ай бұрын
Case 1 could have been rejected when you found a=0 without computing b.
@pas62952 ай бұрын
a^2=9 is s a=3. Then 6b+b=44-9=35.So 7b=35. b=5. Answer ais 3 and b is 5.
@فیروزاهنگریАй бұрын
If b=1 , a^2+2a×1+1=44 , (a+1)^2=44 , a+1=✓44 , a=5•6 result 0
@juvenalkanani2458Ай бұрын
Also, the couple (0; 44) verifies the original equation. Therefore it might be acceptable!
please give answer me how to prove it = +-√-1 please🙏
@danikochman13512 ай бұрын
(a,b)=(2,8);(3,5);(12,-4);(-13,5);(-4,-4)
@pas62952 ай бұрын
a =3 b=5.
@pas62952 ай бұрын
Why do much of complications. Induction method is the easiest. Between 1 and 9 on seeing the equation by giving one value to one unknown and get the value of the other in order to satisfy the equation.
@JunedHussain2 ай бұрын
Positive integer is more than 1-9
@pas62952 ай бұрын
@@JunedHussain The very problem is such two unknown but one equation. Since it happened to lenear one you can have multiple answers. Had it been Quadratic equation you get only their roots. But in Lenear one for two unknown to have only one answer you need one more equation.
@JunedHussain2 ай бұрын
@@pas6295 good
@letsfindthejams35252 ай бұрын
From one equation you can not calculate the value of two ends a and b therefore all is wrong
@raj-nq8ke2 ай бұрын
Comparison part is wrong .
@Chapulin282 ай бұрын
Why?
@yanssala22142 ай бұрын
Haz supuesto 3 casos pero en realidad son infinitos casos. De otro modo hablando su unica ecuacion no tiene solucion unica al tener dos incognitas. Borre esto de internet y no tupa a los estudiantes. Queridos estudiantes si a=0 entonces b = 44 si a =1 b= 4,333; si a =2 , b =8; si a=3, b =5; si a =4, b =3,111...y asi hasta infinito. El valor de a puede ser cualquier numero real y estos no son contables. No crean en este farsante y estudien matemáticas en serio.