Improper Integral of type 1

  Рет қаралды 9,366

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 33
@acerovalderas
@acerovalderas 9 ай бұрын
You are great. I am lucky to have found you.
@savannahkim6679
@savannahkim6679 7 ай бұрын
Love the flow. You are doing great. Keep on!!!!
@AbuHurairaBaig-t8u
@AbuHurairaBaig-t8u 29 күн бұрын
Love ur Way. Keep it up .
@iithomepatnamanojsir
@iithomepatnamanojsir 9 ай бұрын
Very nice sir
@semanurgulhan9520
@semanurgulhan9520 8 ай бұрын
You're amazing thank you♥️
@learning-iz-fun
@learning-iz-fun 9 ай бұрын
Limit can be solved by observation as well. In the product of linear and exponential term, the exponential will always grow or shrink faster than linear
@Galishragasa
@Galishragasa 3 күн бұрын
You are smart teacher
@punditgi
@punditgi 9 ай бұрын
The proper way to learn about improper integrals is to watch Prime Newtons! 🎉😊
@ZolileZicwele-lb6bq
@ZolileZicwele-lb6bq 9 ай бұрын
Yeah, thats proper
@TheOnlyAnonymousMan
@TheOnlyAnonymousMan 9 ай бұрын
'Definite'ly 🙂
@amiahooman
@amiahooman 9 ай бұрын
Nice like begging
@Galishragasa
@Galishragasa 3 күн бұрын
Excellent
@OwenNguyen71
@OwenNguyen71 19 күн бұрын
thank u sir. Merry Christmas to u
@PrimeNewtons
@PrimeNewtons 19 күн бұрын
Merry Christmas
@josegerardodias5591
@josegerardodias5591 7 ай бұрын
Very nice! You are great!
@RanBlakePiano
@RanBlakePiano 7 ай бұрын
This is terrific !
@magdytahir2863
@magdytahir2863 Ай бұрын
The integral of(zero) is a constant but you said that the integral is (zero) ,thanks my dear
@arbenkellici3808
@arbenkellici3808 9 ай бұрын
Hello professor! I need your help to solving: lim x approaches 9- (9-x) 1/4=0 by delta epsilon proof Thank you!
@henrikljungstrand2036
@henrikljungstrand2036 9 ай бұрын
It seems you would need to change the x on the lhs of your expression into x+delta, change the 0 on the rhs into y+epsilon (y being an implicit function of x), and then assume you get such an arbitrary epsilon as an input, and trying to find/make up a suitable implicit function to compute delta as an expression of epsilon; then you would need to compute two different limits, one where epsilon is assumed positive and one where epsilon is assumed negative (where you may compute delta out of epsilon in different ways if you like); and in both cases showing that the expression in x and delta is behaving in such a way that computing it and then taking the limit as epsilon converges to 0 makes your delta also converge to 0, and then forces y to be 0 in both cases. Note that y is not allowed to be dependent on epsilon (or on delta, since delta is dependent on epsilon), only on x, while delta is allowed to depend on both x and epsilon. I have given you the outline for the general theoretical reasoning, now go and do the practical work yourself!
@holyshit922
@holyshit922 9 ай бұрын
Gamma function ? By very simple substitutoion we will get Gamma function
@Gaurav_C_Kher
@Gaurav_C_Kher 9 ай бұрын
That's a cool approach, but i feel like it's using a higher level concept that most people won't be aware of at the level of class this question would be given
@holyshit922
@holyshit922 9 ай бұрын
@@Gaurav_C_KherI have used Gamma function for expressing product lately which I have got from ODE so I thought about it but I agree that it is better to use integration by parts and limits unless it is some strange introduction to the Gamma function
@Gaurav_C_Kher
@Gaurav_C_Kher 9 ай бұрын
@@holyshit922 Ive only seen a little bit about the gamma function off of KZbin, but does this integral just become - Γ(0) when you substitute t = -x? That's quite an elegant solution even though it may be unnecessary at this level
@holyshit922
@holyshit922 9 ай бұрын
@@Gaurav_C_Kher After substitution you will get -Γ(2) -te^{-t} = - t^{2-1}e^{-t} and Γ(2) = 1 Γ(z) has singularity at zero I tried to calculate coefficients of Chebyshev polynomial via power series solution of ode I derived equation in following way I know that T_{n}(x) = cos(n*arccos(x)) Let t = arccos(x) y(t) = cos(nt) Let's differentiate y(t) twice y''(t) = -n^2cos(nt) y''(t) = -n^2y(t) y''(t) + n^2y(t) = 0 Now I changed independent variable t = arccos(x) in this equation and I got (1-x^2)y''(x) -xy'(x) + n^2y(x) = 0 Now I tried to solve it using power series y(x) = \sum\limits_{m=0}^{\infty}c_{m}x^{m} While solving this equation I have got following recursion (m+2)(m+1)c_{m+2} - (m-n)(m+n)c_{m} = 0 and solved it for c_{m+2} (Because we expecting polynomial it is possible to solve also for c_{m}) c_{m+2}= \frac{(m-n)(m+n)}{(m+2)(m+1)}c_{m} c_{m} can be expressed in terms of product \frac{1}{m!}\cdot\prod\limits_{k=1}^{\lfloor\frac{m}{2} floor} (m - 2k - n)(m-2k + n) And I have got Γ(0) after expressing this product \prod\limits_{k=1}^{\lfloor\frac{m}{2} floor} (m - 2k - n)(m-2k + n) in terms of Gamma function but only for n=m=0
@kevinmadden1645
@kevinmadden1645 9 ай бұрын
​@@Gaurav_C_KherUsing an A-Bomb to swat a fly .
@Ivan-fc9tp4fh4d
@Ivan-fc9tp4fh4d 9 ай бұрын
I think the last sentence was not correct. Limit does not converge to "-1". Limit IS equal to "-1".
@PrimeNewtons
@PrimeNewtons 9 ай бұрын
I actually meant to say the Integral converges to -1.
@JSSTyger
@JSSTyger 9 ай бұрын
I'll say -1.
@bastianmora4780
@bastianmora4780 9 ай бұрын
1
@arbenkellici3808
@arbenkellici3808 9 ай бұрын
Sorry (9-x)^1/4
@henrikljungstrand2036
@henrikljungstrand2036 9 ай бұрын
It would be better to redact your original comment.
The Cover-up method of Partial fraction decomposition
12:36
Prime Newtons
Рет қаралды 9 М.
improper  integrals Types 1 and 2
16:28
Prime Newtons
Рет қаралды 16 М.
She wanted to set me up #shorts by Tsuriki Show
0:56
Tsuriki Show
Рет қаралды 8 МЛН
I Sent a Subscriber to Disneyland
0:27
MrBeast
Рет қаралды 104 МЛН
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
How to use the error function for some tough integral
16:20
Prime Newtons
Рет қаралды 22 М.
Double Integrals by Fubini
13:28
Prime Newtons
Рет қаралды 9 М.
Improper integrals discontinuous integrand
21:19
vinteachesmath
Рет қаралды 12 М.
Type 2 improper integrals! calculus 2
26:18
bprp calculus basics
Рет қаралды 71 М.
integral of sqrt of tanx
25:46
Prime Newtons
Рет қаралды 40 М.
Evaluating Improper Integrals
12:24
Professor Dave Explains
Рет қаралды 211 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 764 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 143 М.
Epsilon-delta proof for rational functions
20:13
Prime Newtons
Рет қаралды 25 М.
She wanted to set me up #shorts by Tsuriki Show
0:56
Tsuriki Show
Рет қаралды 8 МЛН