Can we find the value of (1-i) ^ (3+2i) just using binomial identity expansions? (euler constant e is not allowed) . I will subscribe to your channel if you answer this question with explanation.
@aashsyed12773 жыл бұрын
where are the 100 questions?
@curtiswfranks Жыл бұрын
These were fun! This was not the video for it, but it came up twice, so I mention it here: When we encounter a new function, we never have original intuition about the actual values it takes. This is certainly true of things like the logarithm, but there was even a time when you did not know what f(x) = x looks like. Sometimes, we can just plug-and-chug some example inputs. But, usually, we get our best intuition by plotting the function. We can be confident in that intuition and get a more-detailed view of the function's properties by doing things like finding domain, range, intercepts, end-behavior, growth patterns, extrema, saddle points, points of inflection or undulation, etc. Similarly, approximations (Newton's method, Taylor expansion for analytic functions, etc.) can help a student get an actual feel for specific outputs (especially for non-special points). After all of that is completed, people tend to feel that they have a good grasp of the function and no longer question things in the manner like "Isn't W(2) cheating?" (not exactly a paraphrase - more like a stereotypical example). It is a good question to have, but we should be asking it about all functions - and the reason for our not doing so is because we have that improved intuition.
@mr.doritos36693 жыл бұрын
I have never though of lambert W function to be so interesting , thank you for teaching me that ! , i have developed a new thinking ability !
@renardtahar44323 жыл бұрын
vous etes le plus admirable de par la methode, rigueur et maitrise des maths! sincerement vous honnorez le youtube! think you
@davidblauyoutube3 жыл бұрын
It is possible to use W to solve a = x^(x^(x+1)). Solution follows: 1) Take the log of both sides: ln a = x^(x+1) ln x = x^x ln x^x. 2) Apply W: W(ln a) = ln x^x = x ln x. 3) Apply W: W(W(ln a)) = ln x. 4) Finally: x = e^W(W(ln a)). Done! For example, this solves 4 = x^(x^(x+1)) as x ~ 1.559610469.
@blackpenredpen3 жыл бұрын
That’s a beautiful one!
@davidblauyoutube3 жыл бұрын
@@blackpenredpen Thanks! :)
@MZASDanitdkwaras Жыл бұрын
Aku HATE SHARKBRAINZ!
@blackpenredpen3 жыл бұрын
HW: Solve ln(W(ln(x)))=1 Good luck on typing up the answer : )
@SeeTv.3 жыл бұрын
x=e^(e*e^e) Haha love the answer! e isn't just the most common letter in english, it seem's like in math as well xD
@yohangross55183 жыл бұрын
ln(W(ln(x))) = 1 W(ln(x)) = e ln(x) = e*e^e ln(x) = e^(e+1) X = e^(e^(e+1)) I hope i have been careful enough in my typing :)
@SeeTv.3 жыл бұрын
@@yohangross5518 You're right, but e^(e*e^e) looks funnier to me xD
@valemontgomery94013 жыл бұрын
@@yohangross5518 Can confirm! Good job!
@Saffron_Krishna3 жыл бұрын
ln(W(ln(x)))=1...........1 ln(W(ln(x))) e =e¹.......2 W(ln(x)) =e................3 Finally the answer 1+e e X=e. 😂We really need good luck for writing but ....😂😂😂
@Yuscha3 жыл бұрын
I really like this video, it helped me understand the ways to use the W(x) function better than any other sources I could find. I think your way of working through these problems helps teach and demonstrate the usefulness of the W() function tool without getting deep into the weeds like other sources (Wikipedia) do. To comment on something you said in the middle of the video, I think people consider it "cheating" because it feels like mathematicians just "made up" a function to be the opposite of x*exp(x) instead of "solving it for real." But in reality there are plenty of these types of functions that exist. The "error function" for the integral of exp(-x^2) or the Gamma function for non-real-integer factorials. If you think about it, even the "logarithm" itself is just made up to be the opposite of exponentation. I think we're more comfortable with logs because it feels intuitive, but really it's no different. Thanks for the great videos.
@SeeTv.3 жыл бұрын
I love it! I could solve the first 7 questions on my own thanks to your fish 🐠 analogy.
@blackpenredpen3 жыл бұрын
Excellent!
@SeeTv.3 жыл бұрын
@@blackpenredpen Excellet videos!
@tammiedavis60232 жыл бұрын
H t
@tammiedavis60232 жыл бұрын
B
@tammiedavis60232 жыл бұрын
B m s d. 2
@jaskiraatshah9445 Жыл бұрын
Bro congrats this is like the first video of yours which has absolutely easy questions
@harleyspeedthrust40133 жыл бұрын
damn, wish I knew about this stream yesterday. I had to derive wien's displacement law from max planck's law, and i arrived at an equation that I thought could not be solved analytically... turns out I needed to use the Lambert W function which I only JUST learned about by googling today
@ianfowler93402 жыл бұрын
Here's a cute identity. Easy to prove but still nice. W[ ln(a^a) ] = ln(a)
@Saffron_Krishna3 жыл бұрын
Numbers 2,4 5,7...I only solved this 4 questions completely...6 and 8 halfly ....thanks for this amezing vedio ...✨
@akolangto82253 жыл бұрын
Thank you so much master! From the philippines here
@MathElite3 жыл бұрын
Awesome video bprp, I learned a lot
@NintendoGamer7893 жыл бұрын
My first time that I participated, this was fun!
@oni83373 жыл бұрын
lmao 'its e^(1+e) not e^(e+1)' you dumb?
@greghansen382 жыл бұрын
Are there integral and derivative problems, and differential equations, with the Lambert W function? That would be fun!
@cheeseman17722 жыл бұрын
kzbin.info/www/bejne/iJiWlXWlqMuNabs
@redpepper74 Жыл бұрын
Try finding the derivative of the W function in terms of the W function :)
@levskomorovsky1762 Жыл бұрын
Very interesting! But why should expression (x + 1) e ^2(x + 1) in an exercise 8 be squared? You can solve: 1 = (x + 1) e ^2(x + 1) 2 = 2 (x + 1) e^ 2(x + 1) W(2) = W [2(x + 1) e^ 2 (x + 1)] 2 (x + 1) = W(2) x = W(2)/2 -1
@darkfreeway2 жыл бұрын
Hi blackpenredpen! I watched this video and your other video on the lambert w function. Thanks for taking the time to make these videos! They are very helpful! If it wouldn’t be too much trouble, could you please help me with this one? Maybe post a video? x^x + 2x + 3 = 50
In applied math, when a sum is involved, the units much match each terms, so we more often find equations like: x + a * exp ( b * x) = c than x + exp (x) = c (where a, b and c are constants, and in the case of electronic, a and c are positive, b negative, in the case of a P-N junction of a diode/transistor for example). Is there a "trick" to bring the first equation implying the W-Lambert's function? Or to solve analytically: K = x + exp( a* x ) which seems "close" to the Lambert W function. Side note: Since x has units, and that the exponent of the exponential should not have units (thus constant "b" has (unit^ -1) of x, and b*x becomes a pure number) and the result of the exponential is a pure number, so the constant "a" has units of x.
@snnwstt Жыл бұрын
While we can get rif of the constant "a" with a simple substitution like a*u = x, I haven't found a way to then bring the exponent to the proper template.
@redpepper74 Жыл бұрын
The tough part of this problem is that you’ve got addition along with exponentiation separating the xs. The W function is able to “bridge the gap” between exponentiation and multiplication, but I’m not sure what function would do that for adding and exponentiation. Maybe try defining a new function F(x+e^x)=x and work from there? (I think I’ve got something here but it’s a lot of vibes and not much rigor lol)
@redpepper74 Жыл бұрын
Ok after messing with it for a bit I figured out that if x + ae^(bx) = c, then x = [F(bc + ln(ab)) - ln(ab)]/b.
@snnwstt Жыл бұрын
@@redpepper74 Thanks a lot for your time. Really appreciated. I just recently noted that a relatively new section was added in Wikipedia in the Diode Modeling article, specific to a diode in series with a resistor, where the explicit resolution for the current in terms of the Lambert W function is obtained.
@redpepper74 Жыл бұрын
@@snnwstt I only have a high-school-level understanding of circuits and electricity so I don’t really get what’s going on there. But looking into that sum log function was fun :)
@bassem.al-ashour Жыл бұрын
Nice, first you exit Lumbert and then you enter Lumbert from a different door
@kartikeyagarwal51563 жыл бұрын
Hey @bprp There is such a nice content on your channel. I just love seeing your videos. Today, my mind got stuck at a question. Can you please try to figure out what could the possible strategy be to solve the following equation: ln(x+8).ln(2) = ln(x).ln(10) P.S: x=2 seems to be very obvious, but I can't get how can I reach to that (and other real solutions, if any).
@RafaelCBeltrame3 жыл бұрын
Thanks! Best wishes from Brazil!
@Gezraf Жыл бұрын
bprp, i thought about the final question you gave with the superroot and the actual answer might be: x = W(lna)
@Charles_Reid3 жыл бұрын
I came in to this video thinking I wouldnt understand it, but it actually turned out to be pretty easy and interesting. Thanks for the knowledge
@blackpenredpen3 жыл бұрын
Glad to hear it!
@pacolibre54113 жыл бұрын
I like these, but I feel like there’s a more interesting class of equations to be solved (you I believe have done 3 of these) Equations that do not involve W(x), but can only be solved with W(x)
@hansvangiessen8395 Жыл бұрын
The man is great!
@fridgepuff17223 ай бұрын
Thanks for referencing the fish in this vid
@vitalsbat23103 жыл бұрын
I just made a program for calculating lambert w function in my scientific calculator, though numbers too large might not work :( and it takes about 3-5 seconds to evaluate lol
@wondroustrivia3 жыл бұрын
Sir , I am a big fan of you . I really like your videos and the way you explain everything . I am class 12th and I have to say that you are doing a great job ☺ . Sir can you reply me please 😊
@vedantgupta53373 жыл бұрын
They were easy if u know W(xe^x) =x, but the 8th one was a little tough.
@Davide-bl2wb Жыл бұрын
awesome. thank you
@simadenenberg65562 жыл бұрын
Fabulous. Thanks.
@kylehadden7294 Жыл бұрын
Hoy do we get the shirt from this video?
@gaeb-hd4lf3 жыл бұрын
Very fun video!
@subversively66803 жыл бұрын
Hello, is there a way to post all 100 questions regarding what u said at the first of your stream, plz
@Mothuzad3 жыл бұрын
I got everything right until the last one, when I overlooked the possibility of two solutions. I got e^(-W(2)/2)-1, which is equivalent to your second solution.
@factsheet49303 жыл бұрын
What is the deal with sqrt(x) = - 1?
@betelguese183 жыл бұрын
Where did you bought the pokeball involving the mic
@xMinoYTx3 жыл бұрын
Can you make a video about the Barnes G-function please?
@iconic410 Жыл бұрын
For Q8, I got ln(x+1) = W(-(e)^2), then solved for x to get x = e^(W(-(e)^2)) - 1
@fredartson8 ай бұрын
At 32:20 why did he need to square both sides. He could've just done it normally like (x+1)(e^2(x+1))=1 And then 2(x+1)(e^2(x+1))=2 2(x+1)= W(2) x+1= W(2)/2 x= (W(2)/2)-1 It produces a different answer tho 😭😭
@uninteresting14253 жыл бұрын
Thanks from France !
@johnwick71755 ай бұрын
How do you evaluate to find some value for x in question 6? x = e^(W(e^2 + 1))
@AvitaPradhan3 жыл бұрын
How i can contact you...?because i have a problem in second order differential equation(non linear),it is very important to solve it...
@angelmendez-rivera3513 жыл бұрын
Just post it here
@ausaramun3 жыл бұрын
Is there a list of properties involving the Lambert W function (like the ones for the natural log)?
@angelmendez-rivera3513 жыл бұрын
Yes. You can find them in the Wolfram Alpha article for the Lambert W function, and in the Wikipedia article as well. There are also a number of integral formulas you can derive and differential equations you can derive for this function and with this function.
@elliottmanley51823 жыл бұрын
Ooh. Should I get popcorn?
@blackpenredpen3 жыл бұрын
And soda too! : )
@ДенисКосько-н9и3 жыл бұрын
hello. i have a question. how to find real solutions of the equation x^x=a, if a
I need solution for complimentary error function of negative x
@vivektamang2683 жыл бұрын
Actually the question is erfc(-x) =1+erfc(x)
@ccnesbitt3 жыл бұрын
Is it simple enough to say that the third solution to the eighth question must be ruled out because the value is not in the domain of W(x+1)? Since -sqrt(W(2)/2) < -1/e
@nandpatel95583 жыл бұрын
why the product of slope of x- axis and y - axis is not -1 as the product of slope of two perpendicular lines is -1
@SidneiMV9 ай бұрын
hi friends. hi teacher We know that W(xlnx) = lnx And how about *W[(lnx)/x]* ? Is there some "formula" in this case? For example We know W(17ln17) = ln17 But to find/calculate W[(ln17)/17], can we find an exact value, a perfect value, without using approximations, without using things like Wolfram Alpha?
@theimmux30343 жыл бұрын
I wanna see some integrals with W(x)
@curuy30903 жыл бұрын
For x^x^x=a xlnx^x=lna from lnx^a=Alnx x*xlnx=lna x^2lnx=lna 2*x^2lnx=2lna x^2lnx^2=2lna e^lnx^2*lnx^2=2lna lnx^2=W(2lna) Take exponential then take root, hard typing on a tablet and it is 3.40 am I hope it's correct LOL took me like 5 minutes to come up with it
@TechnoRaabe Жыл бұрын
second line is already wrong. ln(x^x^x) = (x^x)lnx, not xln(x^x)
@lolpop77993 жыл бұрын
6:33 look at the clock
@SachinKumar-oh5fu3 жыл бұрын
Sir plz make video on integrals which including w function 😘😘😘
@aashsyed12773 жыл бұрын
lambert w function of a number less than -1/e does exist but in the complex world
@renardtahar44323 жыл бұрын
je mexcuse admirable et respectueux prof: comment on calcule linverse de la fonction f(x)=x^n.y^m, n et m quelconques, il sagit dun cas general
@ale4462 Жыл бұрын
Would Q5 be w(-1/e) ? Then solve for x?
@renardtahar44323 жыл бұрын
symphatique de plus!!!!!
@einsteingonzalez43363 жыл бұрын
37:57 Uh... we expected that you try. We never expected you to know, but we wanted to at least try. Oh well, maybe you didn't want the livestream to go too long. I'll think about it!
@blackpenredpen3 жыл бұрын
I have tried it before: kzbin.info/www/bejne/m5eQhYaKnJJlqas
@StudentsShadow3 жыл бұрын
After watching bprp #shorts then i come here to see what are you doing
@vansf3433 Жыл бұрын
You should have noticed that the expression (1- (x+1)(e^(x+1)^2 = 0 is impossible because (x+1)^2 is always >= 0. Hence, e^(x+1)^2 will always be >=1. Additionally, no matter whatever value of x might be , (x+1) (e^(x+1)^2 ) will never ever = 1 Checking: For x = -1, (x+1)e^(x+ 1)^2 = 0---> LHS =1 - 0 = RHS = 0 is nonsense or impossible For x < -1 , say x= -2----> (-2+1)e^(-2+1)^2 = -1(e) = -e. Plugging e in the eq will give: LHS =1- (-e) = RHS = 0 , which is again impossible For x > -1, say x = 1----> (1+1)(e^(1+1)^2 = 2(e^4). Plugging 2(e^4) in the eq will give: LHS = 1 - e^4;= RHS = 0, which is again impossible Therefore, the eq (1-(x+1)(e^(x(1)^2 = 0 is false. In other words, no more solution can be found from that equation. The only solution is x = -1 You guys will need to learn how to solve probs with logical reasoning to understand such notions of mathemstics, as imaginary or complex numbers, Lambert function, and suchlike, which can be misleading or false, instead of copying them so blindly nonsensically, like a photocopying machine.
@aashsyed12773 жыл бұрын
when will you do 100 questions?????????????
@rafciopranks35703 жыл бұрын
Hi guys. Can you help express imaginary part of z^((1-z)/(1+z)) as a fuction?
@michaelkiersten17963 жыл бұрын
wow, 24:00 was crazy
@aashsyed12773 жыл бұрын
10:42 am
@camillemcneely19733 жыл бұрын
10:42 am I the only person who thinks w(x)=1/2 is a better answer?
@aashsyed12773 жыл бұрын
10:42 am
@MrRight-ht8hz11 ай бұрын
No 6 - x ln(x) = e^2 +1, W(x ln x = e^2 +1, where the 1st x gone from the previous line? Then follows the line W (ln x e ^(ln X) where W (ln x e ^(ln X) = ln x Who can help?
@JaskaranSingh-dz2wt3 жыл бұрын
Hlo plz help im stuck : integrate( (sinx)^1/2)/cos x dx
@angelmendez-rivera3513 жыл бұрын
y = sin(x)^(1/2) dy = cos(x)/[2·sin(x)^(1/2)]·dx, so sin(x)^(1/2)/cos(x)·dx = sin(x)/cos(x)^2·cos(x)/sin(x)^(1/2)·dx = 2·sin(x)/cos(x)^2·cos(x)/[2·sin(x)^(1/2)]·dx = 2·sin(x)/cos(x)^2·dy = 2·sin(x)/[1 - sin(x)^2]·dy = 2·y^2/(1 - y^4)·dy 2·y^2/(1 - y^4) = [(1 + y^2) - (1 - y^2)]/[(1 + y^2)·(1 - y^2)] = 1/(1 - y^2) - 1/(1 + y^2) = 2/[2·(1 - y^2)] - 1/(1 + y^2) = [(1 - y) + (1 + y)]/[2·(1 + y)·(1 - y)] - 1/(1 + y^2) = 1/2·1/(y + 1) - 1/2·1/(y - 1) - 1/(y^2 + 1). Before proceeding to antidifferentiate, here is something that needs to be understood. sin(x) is necessary an element of [-1, +1] for every x, and as such, sin(x)^(1/2) is an element of [0, 1] for every x that is an element of the union over all integers m of the intervals [2·m·π, (2·m + 1)·π]. Furthermore, cos(x) = 0 for every x = m·π + π/2. As such, the antiderivatives of sin(x)^(1/2)/cos(x) only exist at the intervals (2·m·π, 2·m·π + π/2) and (2·m·π + π/2, 2·m·π + π), all of which are mutually disjoint and disconnected. Thus y is an element of the interval (0, 1), and in this interval, 1/(y + 1) has antiderivatives ln(1 + y) + C0, 1/(y - 1) has antiderivatives ln(1 - y) + C1, and 1/(y^2 + 1) has antiderivatives arctan(y) + C2. Therefore, 1/2·1/(y + 1) - 1/2·1/(y - 1) - 1/(y^2 + 1) has antiderivatives 1/2·ln(1 + y) - 1/2·ln(1 - y) - arctan(y) + 1/2·C0 - 1/2·C1 - C2 with respect to y. However, since y is a function with a domain that is a disjoint union of disconnected intervals, the constants of integration with respect to y are sums of step function with respect to x, so the antiderivatives of sin(x)^(1/2)/cos(x) with respect to x are given by 1/2·ln[1 + sin(x)^(1/2)] - 1/2·ln[1 - sin(x)^(1/2)] - arctan[sin(x)^(1/2)] + C(x), where C(x) = A(m) if x is an element of the interval (2·m·π, 2·m·π + π/2), C(x) = B(m) if x is an element of the interval (2·m·π + π/2, 2·m·π + π), where A and B are families of real numbers indexed by the integers.
@herynugroho12573 жыл бұрын
Please..Can you find Im (i/z)?
@aswinr96763 жыл бұрын
31:30 lol what???
@saadkarim813 жыл бұрын
Are you a student or a teacher?
@youkaihenge58923 жыл бұрын
Anyone else think of the Wronskian Fundamental Set when he writes W?
@sovansekharsarma47303 жыл бұрын
It's around 3:00 am at night😓😓
@sovansekharsarma47303 жыл бұрын
@Cyril Scetbon opps 😅
@vansf3433 Жыл бұрын
X = -1 +sqrt(W(2)/2) is also a baseless statement . You must prove it's a correct answer
@SuperDeadparrot9 ай бұрын
Why does W(e)=1?
@andywalls87078 ай бұрын
W(x) = a aeª = x Then: W(e) = 1 1e¹ = e, which is True.
@syedmdabid7191 Жыл бұрын
Sorry Sir! Sin m^n=??? ( where m&n are real numbers, No expansion, it must be FINITE SERIES.)
@hoen35612 жыл бұрын
q3 was the easiest imo
@loai885410 ай бұрын
🌹🌹🌹🌹
@ameyatulpule59772 жыл бұрын
Can you please make a video on the inverse of the Lambert W function? That means, if W(x . e^x) = x, what is W(x) ?
@alvarosuarez61833 жыл бұрын
Entiendo ,pero no sé cómo se halla:w(ln 3)
@tushroy813 жыл бұрын
Please prove that the corresponding angles of parallel lines are equal.
@volodymyrgandzhuk3613 жыл бұрын
If they were not, one would be less than the other, but then two different parallel lines would pass through the same point
@mohamedhadjalla3 жыл бұрын
Please i have an equation to resolve ! 🙏 exp ( -x²) - 2√π *( 10^-4)* x = 0 Please someone help me i need the solution ! Can you make a short video for it ????
@antoniussugianto79733 жыл бұрын
Can we find the value of (1-i)^(2+i) just using binomial identity extensions ? (Euler constant e is not allowed)
@bouazzayamani592 жыл бұрын
why w(x)ew(x) =x ?
@beniocabeleleiraleila5799 Жыл бұрын
Think in W(x) W(x)*e^W(x) = T (Take W() on both sides) W( W(x)*e^W(x) ) = W(t) W(x) = W(t) X = t
@ngochoang46393 жыл бұрын
27:23 lmao
@nz70253 жыл бұрын
I really want to know your name
@mathevengers11313 жыл бұрын
1000th like
@waynelw4141 Жыл бұрын
solved q8 with simultaneous equation 🤣
@orionr34793 жыл бұрын
Ur store is broken
@necrolord19203 жыл бұрын
You can rule out the solution with the minus sign by plugging it into your earlier equation (x+1)e^[(x+1)^2]=1 if you plug in x=-1-sqrt((W(2))/2), you will get (-sqrt((W(2))/2))e^[(W(2))/2] = 1 Assuming we are looking at W(2) in the real world: -sqrt((W(2))/2) is a negative number. e^[(W(2))/2] is a positive number. when you multiply them together, you get a negative number. How can a negative number equal 1? It can't, so that isn't a valid solution.
@vestelshirley8887 Жыл бұрын
You need more preparation.
@marienkos Жыл бұрын
Unfortunately I couldn't solve x^x^x = a, but I have for you a surprise: a demonstration that x=x. Yee! So, for the sake of clarity, let's make explicit the parenthesis: x^(x^x) = a Let x = e^t (e^t)^((e^t)^(e^t)) = a e^(t((e^t)^(e^t))) = a e^(t(e^(te^t))) = a t(e^(te^t)) = ln(a) e^(te^t) = ln(a)/t te^t = ln(ln(a)/t) t = W(ln(ln(a)/t)) Let's return to x, remember that x = e^t and t = lnx x = e^W(ln(ln(a)/ln(x))) x = e^W(ln(log x (a))) x = e^W(ln(x^x)) x = e^W(xlnx) x = e^W(lnx e^lnx) x = e^lnx x = x
@Saffron_Krishna3 жыл бұрын
Numbers 2,4 5,7...I only solved this 4 questions completely...6 and 8 halfly ....thanks for this amezing vedio ...✨