Dude,i just wanted to tank you,You are saving people from wasting hours searching for a simple proof.❤
@112BALAGE1125 жыл бұрын
A more sophisticated name for "Junk" would be Lagrange remainder.
@jacoboribilik32535 жыл бұрын
"For the sake of brevity we will always refer to this remainder as junk" quoting Euler
@lacnetopanky65125 жыл бұрын
Lagrange remainder I just way of expressing the difference between function and its approximation. There exists also Cauchy remainder, integral remainder and maybe more of them. I think junk is better term for this kind of junk.
@pauselab55699 ай бұрын
probably something like O(f^(n)) since it might not have a n+1 derivative
@chirayu_jain5 жыл бұрын
I always wanted this proof
@AhmedIsam5 жыл бұрын
I swear I've been looking for this since the moment my eyes fell on Taylor series in Calculus book in my high school.
@jacoboribilik32535 жыл бұрын
This is the best proof of Taylor's theorem, in my opinion. The rest is ok, but none of them is so simple and yet so powerful to delve into the question of what functions can and can't be represented by an infinite polynomial. Dr.Peyam, I would recommend that you make a video on taylor polynomial uniqueness, it's a beautiful fact in math.
@marcotanzilli48105 жыл бұрын
Love this proof Dr Peyam! And it's even much easier than the one they usually teach in my uni
@ugursoydan81874 жыл бұрын
this is one of the most ingenious proof that I have seen in my life. thanks you very much. and also we can continue to taking integrals infinite times. doesn't we?
@maxsch.65555 жыл бұрын
Wow I've never seen this proof. Thanks for sharing! :)
@benjamincolson5 жыл бұрын
Could you make a part 2 that addresses convergence?
@LuisBorja19815 жыл бұрын
What a swift Taylor Theorem proof!
@davidmillerdrums5 жыл бұрын
Wow you are so right about that proof. Soooooo nice. Sincere thanks.
@fedefex15 жыл бұрын
Great! Multivariable Taylor proof now!
@drpeyam5 жыл бұрын
To get the multi variable version with f(x), apply this video to g(t) = f(tx), where t is real, and set t = 1
@fedefex15 жыл бұрын
@@drpeyam thanks!
@s00s775 жыл бұрын
do we lack anything besides induction on n and the observation that f is at least C(n-1)?
@pauselab55699 ай бұрын
the historical proof was about newton.lagrange interpolations done at nearly the same point.
@tgx35295 жыл бұрын
Dr Peyam,. Is here contemplated some assumed, that the function f is of class C k, in connection with the JUNK?
@dgrandlapinblanc5 жыл бұрын
Excellent. Thank you very much.
@Handelsbilanzdefizit5 жыл бұрын
instead of a powerseries: f(x) = a0 + a1 x + a2 x² + a3 x³ + ... You can develop many functions as a kind of taylor product: f(x) = a0 * a1^x * a2^x² * a3^x³ * ...
@ElizaberthUndEugen5 жыл бұрын
I don't follow the step where $\int_a^x f'(a)$ becomes $f'(a) (x-a)$. Why can we do that?
@drpeyam5 жыл бұрын
f’(a) is a constant (with respect to x), so just pull it out
@ElizaberthUndEugen5 жыл бұрын
@@drpeyam Ah, of course. Thanks!
@cach_dies Жыл бұрын
Who's the first guy in the meme from the thumbnail?
@mathematicadeestremo63965 жыл бұрын
Taylor ..... New-Zealand :)))
@redknight3445 жыл бұрын
Awesome!!!!
@willnewman97835 жыл бұрын
But if you do it like this, then the constant M depends on how close x is to a. If you wanted it to hold for all x, M could go to infinity, right?
@Contradi5 жыл бұрын
The constant M is bounded below by the maximum value of |f'''(x)| between x and a, you're correct. Choosing a more positive egative x value might require you to increase M. If f'''(x) is unbounded, then yes you could have it go for infinity for the "Junk" term to be valid for all x. This is in line with the expectation that using a lower order approximation for a function can result in an unbounded error as you move away from the point you use to make your approximation. e.g. my error will go to ∞ as x -> ∞ if I approximate a parabola with a line. (As a counter example, your error will not go to ∞ if you approximate, say, a sine function with a constant function like y = 0 or y=122)
@pranavsingh92845 жыл бұрын
enjoyed!
@AJ-fo3hp3 жыл бұрын
This is looks like wavelet analysis, sum and difference
@cmcatholic17982 жыл бұрын
Damn ross Taylor in the thumbnail 😂😂
@subhrajyotidutta47255 жыл бұрын
Sir just a kind request. while writing on the board try not to cover up the board. I like you videos AF. Thank you : ) Love from india.😘
@RalphDratman5 жыл бұрын
That is important. Also please stop and stand aside for a moment before erasing the board so we can pause the video at that point if necessary and review anything we have not yet understood.
@xsunshine99_455 жыл бұрын
Right no this video has 110 likes and *ZERO* dislikes You have to be darn good to pull that off in 2019
@drpeyam5 жыл бұрын
Yay!!! 😄
@66127705 жыл бұрын
Simply delicious!
@slavdam23004 жыл бұрын
mind = blown
@蔺美云2 жыл бұрын
You made me laugh 😂 when you said the junk…..
@choungyoungjae82713 жыл бұрын
cool
@shandyverdyo76885 жыл бұрын
Someday, i'll understand. :):
@guitoo19185 жыл бұрын
Taylor Theorem never worked for me. My junk is probably just too big.
@gatitoconsueter5 жыл бұрын
7:20 do you get it XD
@NamaSaya-wg9gn5 жыл бұрын
Finally
@kmac59125 жыл бұрын
Please solve the infinite product of x=1 to infinity of cos(pi/(x+2))
@pranavsingh92845 жыл бұрын
u dont pre assume something u just go tep by step and do it