A Very Nice Math Olympiad Problem | Solve for x | You Need To Know This Trick | Algebra

  Рет қаралды 5,310

Spencer's Academy

Spencer's Academy

Күн бұрын

In this video, I'll be showing you step by step on how to solve this Olympiad Maths Exponential problem using a simple trick.
Please feel free to share your ideas in the comment section.
And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.

Пікірлер: 15
@aperson2020
@aperson2020 5 күн бұрын
Nice.
@SpencersAcademy
@SpencersAcademy 5 күн бұрын
Thank you 😊
@tommyliu7020
@tommyliu7020 11 сағат бұрын
This feels like an incredibly slow method. Once we have it in the form of x^6 = 2^6, we know the answers are the 6th roots of unity, scaled by the magnitude of 2. So basically, the 6 answers are: 2e^(i*0) = 2 2e^(i*pi/3) 2e^(2i*pi/3) 2e^(i*pi) = -2 2e^(4i*pi/3) 2e^(5i*pi/3) You can figure this out in like 15 seconds.
@ربهامابراهيم-ح1ن
@ربهامابراهيم-ح1ن 5 күн бұрын
رائعه
@SpencersAcademy
@SpencersAcademy 5 күн бұрын
Thank you 🙏
@niranjanchakraborty1139
@niranjanchakraborty1139 4 күн бұрын
Ans=1. x^3/8=8/x^3=1
@williamBryan-k2e
@williamBryan-k2e 4 күн бұрын
can someone explain to me why you cannot just do this x^5 = 2^2 = now obviously x=2 ( and actually +/- 2 - as we have an even exponent. this is not unlike when you say 2^x = 2^y - so use the rule of exponents to say x=y.
@BluesChoker01
@BluesChoker01 Күн бұрын
The rule of exponents requires terms have the same base, as you know. Here, we have two real solutions and four complex solutions, so I don't know that this is the exact approach that would help you solve them all. Now, you could take the 6th root of each side, and generate X = +-2 for the reals (as the beginning factors have an even number, or six intercepts in the Real and Complex planes (X^6 = 2^6). Better still, if you have mastered the nth root of unity (1) technique, you could use that advanced technique to solve all the roots. Look online or in a textbook to read about it. Now using exponents to produce a difference of squares--which then can produce a sum and difference of cubes--along with the linear terms for the real solutions, can be done fast with practice. Unless you're really quick at expansions to factors and the reverse, it's propably worth doing. And again, it's a shortcut to producing one equation, fully expanded, to solve for all 6 intercepts. Check my post for an example. Only needed figure one complex solution, as I got the pattern. Anyway, have fun, and yes, it's always good to look for alternative approaches. Even a dead end will learn you something. 👍
@SpencersAcademy
@SpencersAcademy Күн бұрын
Excellent 👌
@vincentrobinette1507
@vincentrobinette1507 5 күн бұрын
X=2 2/2=1 1X1X1=1 1X1=1
@phillipmcduffie9353
@phillipmcduffie9353 5 күн бұрын
2 ?
@श्रीस्वामीसमर्थ-थ7घ
@श्रीस्वामीसमर्थ-थ7घ 13 сағат бұрын
x = 2 And when we simplify equation by putting x =2 then answer is 1
@key_board_x
@key_board_x 5 күн бұрын
(x/2).(x/2).(x/2) = (2/x).(2/x).(2/x) → where: x ≠ 0 (x/2)³ = (2/x)³ (x/2)³ - (2/x)³ = 0 → recall: a³ - b³ = (a - b).(a² + ab + b²) [(x/2) - (2/x)].[(x/2)² + (x/2).(2/x) + (2/x)²] = 0 [(x²/2x) - (4/2x)].[(x²/4) + 1 + (4/x²)] = 0 [(x²/2x) - (4/2x)].[(x⁴/4x²) + (4x²/4x²) + (16/4x²)] = 0 [(x² - 4)/2x)].[(x⁴ + 4x² + 16)/4x²] = 0 (x² - 4).(x⁴ + 4x² + 16)/8x³ = 0 (x² - 4).(x⁴ + 4x² + 16)/x³ = 0 → recall: x ≠ 0 (x² - 4).(x⁴ + 4x² + 16) = 0 (x + 2)(x - 2).[x⁴ + 4x² + 16] = 0 (x + 2)(x - 2).[(x² + 2)² - 4 + 16] = 0 (x + 2)(x - 2).[(x² + 2)² + 12] = 0 First case: (x + 2) = 0 → x = - 2 Second case: (x - 2) = 0 → x = 2 Third case: [(x² + 2)² + 12] = 0 (x² + 2)² + 12 = 0 (x² + 2)² = - 12 (x² + 2)² = 12i² x² + 2 = ± i√12 x² + 2 = ± 2i√3 x² = - 2 ± 2i√3 First possibility: x² = - 2 + 2i√3 x² = - 2 + 2i√3 x² = 1 - 3 + 2i√3 x² = 1 + 2i√3 - 3 x² = 1 + 2i√3 + 3i² x² = (1)² + 2i√3 + (i√3)² x² = (1 + i√3)² → x = ± (1 + i√3) Second possibility: x² = - 2 - 2i√3 x² = - 2 - 2i√3 x² = 1 - 3 - 2i√3 x² = 1 - 2i√3 - 3 x² = 1 - 2i√3 + 3i² x² = (1)² - 2i√3 + (i√3)² x² = (1 - i√3)² → x = ± (1 - i√3)
@SpencersAcademy
@SpencersAcademy 5 күн бұрын
Your maths skills are really exceptional. Great job 👏
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
France l can you solve this?? l Olympiad Mathematics
18:01
Math Master TV
Рет қаралды 726 М.
Math Olympiad 3^m-2^m=65 | Math Olympiad Problems | Algebra
10:49
OnlineMaths TV
Рет қаралды 2,7 МЛН
Japanese | A Nice Algebra Simplification | Math Olympiad
14:14
Math Hunter
Рет қаралды 77 М.
An Easy Hack to Solve This Radical Math Challenge | Algebra
14:50
Olympiade , Maths
14:33
Éducation Plus
Рет қаралды 717 М.
Italy l Very Nice Olympiad Math Exponential Problem l find value of x?
17:10
3 to the x = 20, do you know how to solve this equation?
19:39
TabletClass Math
Рет қаралды 83 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН