integral of sqrt(x^2+1), with Euler Substitution, math for fun

  Рет қаралды 425,871

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 406
@tokenup420
@tokenup420 7 жыл бұрын
trigsubs are way easier typically but I may do it this way in my D.E. class just to make my teacher think im smarter lol.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
that works!
@holyshit922
@holyshit922 7 жыл бұрын
Here after Euler's substitution and some linear properties you will get integal of power function To see that not always trig subsittutions are faster calculate integral Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) or Int(\frac{dx}{x\sqrt{2x^2-2x+1}}) If we use first Euler substitution for integral Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) we will get integral which can be easily calculated mentally but if we use third substitution (with the roots) we should use Ostrogradsky method for isolating rational part of integral and calculate twelve coefficients If you still want trig substitutions you need three substitutions (actually two of them are inverse trig substitution)
@holyshit922
@holyshit922 7 жыл бұрын
Yeah is there someting easier then power rule and linearity of an integral , because it we will get after Euler substitution in this integral
@Linus-ex3xs
@Linus-ex3xs 6 жыл бұрын
Jacek Soplica you do LaTeX right?
@BY-sh6gt
@BY-sh6gt 5 жыл бұрын
I use multiple u-subs on the exam and got the exact same answer... but that's too much subs and after i submitted my answer i just realised that trig-sub 'exists' 😂
@swedishmathtutor6104
@swedishmathtutor6104 7 жыл бұрын
And all of you hating and saying why don't you do trig sub. This is the beauty of math. 1. Two different methods arrive at the same solution and 2. There exists a much more elegant approach. Now imagine this was the way you were taught and someone showed you trig sub. What would you say?
@marcushendriksen8415
@marcushendriksen8415 6 жыл бұрын
"That's pretty awesome!" (but then again, I do appreciate the fact that there are multiple ways to skin mathematical cats)
@arjavgarg5801
@arjavgarg5801 5 жыл бұрын
Swedish Math Tutor I would say, why didn’t you tell me this first?
@peorakef
@peorakef 3 жыл бұрын
id say: you cheater!
@SimsHacks
@SimsHacks 2 жыл бұрын
Also, this sub works always, not the case with trig sub, where you have troubles with domain if you put x=tan(theta) for example.
@g0rgth3b0rg
@g0rgth3b0rg 7 жыл бұрын
Rewriting (1/t^2 - t^2) as a difference of two squares, then multiplying top and bottom of the fraction by the conjugate, only to create a difference of two square conjugates is beautiful and amazingly clever.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Greg Brown thank you!!!!
@allaincumming6313
@allaincumming6313 5 жыл бұрын
Sí, se soltó la greña lmL
@ekxo1126
@ekxo1126 3 жыл бұрын
@@allaincumming6313 "Yes, the lmL hair was released" thanks google translate
@farazriyaz9078
@farazriyaz9078 3 жыл бұрын
@@ekxo1126 I wonder where can I buy the rumored lmL hair...
@otromenfeick9382
@otromenfeick9382 3 жыл бұрын
@@ekxo1126 I'm a native spanish speaker, that's indeed what it means. The commentary itself is what doesn't make sense lol
@mohan153doshi
@mohan153doshi 7 жыл бұрын
This Euler's sub method of solving this rather simple integral was really fascinating and I just loved the algebra involved here. The ugly radicals just vanish like pure magic. Who said that Math is not magic? You just proved that math can be magical and beautiful. Thanks for this awesome substitution. It can make anyone's day (anyone who likes math) beautiful. In a parallel universe, I hope I come across a math teacher like you in real life instead of the virtual interaction here. I would surely feel blessed then.
@jif7707
@jif7707 5 жыл бұрын
What's is the "ugly radical"?
@maalikserebryakov
@maalikserebryakov 2 жыл бұрын
@@jif7707 ur mum
@toopytoopy8547
@toopytoopy8547 5 жыл бұрын
*Try to subtitute x by the hyperblic sinus : sinh(t)* as a remind, sinh(t) = (exp(t)-exp(-t))/2 ; cosh(t) = (exp(t)+exp(-t))/2 ; sinh'(t)= cosh(t) then if x = sinh(t) , we have t=ln(x+sqrt(1+x²)) _(easy to obtain in two lines!)_ So, *1+x² = 1+sinh(t)² = cosh(t)²* and *dx= cosh(t) dt* let's note int(f(x)dx ,0 ,a ) the integral of a function f(x) between 0 and a then int(sqrt(1+x²) dx ,0,a) = int( cosh(t)² dt, 0, ln(a+sqrt(1+a²)) *## i will note b := ln(a+sqrt(1+a²) which means that sinh(b) = a##* But we have cosh(t)² = (exp(2t)+exp(-2t)+2) / 4 so int( cosh(t)² dt, 0, b) = [exp(2t)/8 - exp(-2t) /8 + t/2] # between 0 and b = exp(2b)/8 - exp(-2b)/8 +b/2 Moreover exp(2b)-exp(-2b) = (exp(b)+exp(-b)) (exp(b)-exp(-b)) = 4 sinh(b) cosh(b) and we know that cosh(b) = sqrt(1+sinh(b)²) then int( cosh(t)² dt, 0, b) = ( sinh(b) . sqrt(1+sinh(b)²) ) /2 + b/2 . As we have a = sinh(b) then : int( cosh(t)² dt, 0, b) = (a . sqrt(1+a²))/2 + ln(a+sqrt(1+a²))/2 Which means that the integral function of sqrt(1+x²) is *(x sqrt(1+x²))/2 + ln(x+sqrt(1+x²))/2* AS FOUND IN THE VIDEO Notice that if you deal well with hyberbolic trigonometry this way of calculating the integral is faster and easier !!
@allaincumming6313
@allaincumming6313 5 жыл бұрын
In this case: Hyperbolic sub>Trig sub>Euler sub
@samevanovitch3362
@samevanovitch3362 5 жыл бұрын
You are amazing and I was wondering why he didn't use the change X = SINH(t)
@최문규-o4d
@최문규-o4d 5 жыл бұрын
Wow U are genius
@Rosie6857
@Rosie6857 4 жыл бұрын
Another substitution that works is x = tan t
@peamutbubber
@peamutbubber Жыл бұрын
Nah tany = x is way faster
@neomooooo
@neomooooo 4 жыл бұрын
Excellent video! I prefer x=sinh(t). Hyperbolic trig sub is an elegant approach, and is a middle ground between Eulers trick, and classic trig sub.
@maalikserebryakov
@maalikserebryakov Жыл бұрын
Not really
@DougCube
@DougCube 7 жыл бұрын
Two minor issues... 1) You never justify swapping the order of the absolute-value and -1 power at 17:12. 2) At 19:38, the reason why the inside is positive and you can drop the absolute-value is not complete. If you have (A+B) and A > B, you cannot conclude (A+B) > 0. Counterexample: A=1, B=-2. (The missing reason is that if x is negative, the A portion is greater than -x to get the sum to be positive.)
@antimatter2376
@antimatter2376 6 жыл бұрын
1st the reason he can brirng the -1 to the t as a power is because of a ln property. 2nd it's different because you square x and add 1 inside a square root and subtract x. if you just have sqrt(x^2)-x then it's zero. But instead we have the +1 so sqrt(x^2+1)-x is always positive. You're example doesn't consider the square and sqrt.
@Jamelele
@Jamelele 7 жыл бұрын
when do you specifically need to use euler's sub? That'd be interesting :)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
It was a question sent by one of my subscribers
@maalikserebryakov
@maalikserebryakov Жыл бұрын
You can use it whenever there is a specific composition of a quadratic inside a radical But when the quadratic contains the x term, trigsub will no longer work. So you will use euler sub then.
@sandile13809
@sandile13809 5 жыл бұрын
This made me appreciate trig sub
@johngreen3543
@johngreen3543 3 жыл бұрын
Trig subs can be avoided in many cases. Particularly with radical expressions with x2 - 1, x^2 +1 and 1-x^2 in the radicand. Do not use trig for them
@marvalmej007
@marvalmej007 Жыл бұрын
Genuinely nice explanation! This is amazing. Math is beautiful and magic, you are an amazing magician. Kudos!!
@diamonddave2622
@diamonddave2622 7 жыл бұрын
looks like we are now black pen, red pen and blue pen!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Diamond Dave yup!
@papajack2205
@papajack2205 7 жыл бұрын
Diamond Dave there was already a video with a green pen included. I guess crazy things are going on these days..
@AlgyCuber
@AlgyCuber 6 жыл бұрын
purple pen too
@slippygames3519
@slippygames3519 4 жыл бұрын
@@AlgyCuber blackpenredpenbluepengreenpenpurplepen
@ellyvatedaf
@ellyvatedaf 4 жыл бұрын
@@slippygames3519 RGB pen
@NonTwinBrothers
@NonTwinBrothers 3 жыл бұрын
Every time I see Euler in the title I'm like "Daaaamn he EVEN has a substitution????"
@lebgdu17pktudorpa23
@lebgdu17pktudorpa23 5 жыл бұрын
Little note : 1-t^2 / 2t , is actually the formula (when you let t=tan(theta) ) for 1/tan(2*theta) . This method thus shares a relation with trig sub anyway :) Very nice video!
@complex314i
@complex314i 5 жыл бұрын
t^-2-t^2 = (t^-1-t)(t^-1+t) = 2x(t^-1+t) = 2x(t^-1-t+2t) = 2x(2x+2t) = 4x(x+t) = 4x(x^21)^(1/2) Easier to do difference of squares while still in t.
@gloystar
@gloystar 6 жыл бұрын
Ohh! Thank you so much for this video that answered my question. Good job bro, keep it up!
@isobar5857
@isobar5857 6 жыл бұрын
Geez...you have the patience of a saint!
@goedelite
@goedelite 4 жыл бұрын
The frequency of advertising interruptions for an educational feature is disgraceful. I would remember who the advertisers are - not to buy their products but to avoid them!
@anoopkumar-dt7wp
@anoopkumar-dt7wp 6 жыл бұрын
We had a sir who taught it like this x/2(question)+constant/2(integral of reciprocal of question)
@johnmahoney5805
@johnmahoney5805 6 жыл бұрын
Never thought I'd say that I'd prefer to do trigonometric substitution, but here we are.
@maalikserebryakov
@maalikserebryakov 2 жыл бұрын
Trig sub is not useful when there are many other terms apart from the radical This method works always to simplify the integrand
@schoob69
@schoob69 3 жыл бұрын
Just an awestruck highschool calc student here, but, at 14:32, why do the conjugates cancel in the denominator? I get that x^2 + 1 - x^2 equals one but what about the second sq root (x^2 + 1) + x term? What happens to that?
@johngreen3543
@johngreen3543 3 жыл бұрын
The best method is not either trig sub or euler sub. The best method is integration by parts. Let u =(x^2+1)^1/2 and dv = dx. then a little add and subtract will give the original integral plus a familiar integral. Give it a try.
@zoso25
@zoso25 6 жыл бұрын
While making the initial substitution for X+t, couldn't we just integrate Xdx and tdx in parts and then substitute dx with the dt form? That would simplify things I guess. We won't need to substitute t with X form for atleast one part. I'm probably not thinking this through and might be overlooking something.
@mbulut7
@mbulut7 3 жыл бұрын
I was going to say to the publisher, "hey bro, you just missed the beauty of this method: first part is just (x^2)/2, and you do just t*dx part". I said let me first scan through the comments not to repeat the same thing. then I saw your comment. You are damn right, that is the way to do this integration.
@holyshit922
@holyshit922 3 жыл бұрын
No you should express x and sqrt as a function of t and then differentiate x with respect of t
@SimsHacks
@SimsHacks 4 жыл бұрын
We learn it since it is universal. Trig sub doesn't always work if you have other things apart the sqrt in the integral.
@maalikserebryakov
@maalikserebryakov 2 жыл бұрын
I see. Thank you. This will help me immensely
@bmrm2004
@bmrm2004 7 жыл бұрын
easier way: just replace x with sinh (t)
@nejlaakyuz4025
@nejlaakyuz4025 5 жыл бұрын
Or tan(t)
@1_adityasingh
@1_adityasingh 5 жыл бұрын
@@nejlaakyuz4025 then you have to integrate sec (x)
@me_hanics
@me_hanics 4 жыл бұрын
@@1_adityasingh integrate of secant is "known", this channel has a video on it
@tikz.-3738
@tikz.-3738 4 жыл бұрын
@@me_hanics it's ln(tan(X)+sec(X)) it's a pretty standard integral should be remembered probably
@digroot
@digroot 4 жыл бұрын
If x^2 + 2 then your method might not work if you sub sinh(x), Euler method seems to be working in x^2 + a, maybe x^3 + a, not sure yet
@lemonlimeGOD
@lemonlimeGOD 7 жыл бұрын
Wow, you were right. That WAS really cool!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Alex Behlen I am glad that you like it!!!
@janderson2709
@janderson2709 7 жыл бұрын
Why does the initial equation equal X+t?
@JoshuaHillerup
@JoshuaHillerup 7 жыл бұрын
Jacob Anderson he just declared it is. You're allowed to do that when you are defining a new variable t.
@erinasama4976
@erinasama4976 7 жыл бұрын
Jacob Anderson because it must be something bigger than x
@sherllymentalism4756
@sherllymentalism4756 5 жыл бұрын
Even negatively bigger 😂
@neuralwarp
@neuralwarp 5 жыл бұрын
The wording would be "select t such that sqrt(x2+1) = x+t".
@holyshit922
@holyshit922 6 жыл бұрын
In polish and russian schools Euler's substitutions was standard ones f.e can be found in russian textbook Курс дифференциального и интегрального исчисления Григо́рий Миха́йлович Фихтенго́льц with short geometric interpretation
@pedrojosealbarracinvargas7533
@pedrojosealbarracinvargas7533 6 жыл бұрын
¿cuál de las 3 sustituciones Euler es mejor? ¿algún consejo?
@MrOLOY-mj8fi
@MrOLOY-mj8fi 7 жыл бұрын
HI was it possible to simply use x=sh(t) ?
@IzayoiMeiHigu
@IzayoiMeiHigu 7 жыл бұрын
can you make a video demonstrating the Euler substitution??? I don't want to memorize without understanding why is that possible, but I can't find the demonstration on Wikipedia ... :(
@holyshit922
@holyshit922 7 жыл бұрын
Говоришь по русский ? Hablas espanol ? They have recorded video about Euler's substitutions
@IzayoiMeiHigu
@IzayoiMeiHigu 7 жыл бұрын
si hablo español, como lo notaste? :O
@holyshit922
@holyshit922 7 жыл бұрын
Sprichst du deutsch ? I found Euler's algebra book in which is rationalization of square root of quadratic The guy whose video i had watched changed state of his videos to private but russian is even better because you have video on youtube and also quite good book Курс дифференциального и интегрального исчисления Фихтенгольц Г М Euler's book Leonheardi Euleri opera omnia www.math.uni-bielefeld.de/~sieben/Euler_Algebra.ocr.pdf page 349
@IzayoiMeiHigu
@IzayoiMeiHigu 7 жыл бұрын
thanks :D
@holyshit922
@holyshit922 7 жыл бұрын
Watch also separation of rational part of the integral of rational function (Ostrogradsky method of undetermined coeffincients ) because it can be useful after Euler substitution Your analysis of Euler substitution start with cutting curve y^2=ax^2+bx+c with secant line
@zahari20
@zahari20 Жыл бұрын
The best way to solve this integral is by setting x = sinh(t). Then we have Integral (cosh(t)^2 dt and here cosh(t)^2 = 1/2(1 + cosh(2t)) etc.
@chazzaca
@chazzaca 4 жыл бұрын
At 17:00 I would have just put in t=sqrt(x^2+1) - x and be done with it!! Other than that great video and thanks for showing us that Euler rules!! :-)
@ahmeddamour3661
@ahmeddamour3661 Жыл бұрын
Chapeau ! 😊 On peut aussi faire X = Tan (téta) ... par la substitution trigonométrique.
@swedishmathtutor6104
@swedishmathtutor6104 7 жыл бұрын
Never seen that method! Very interesting. Would like to see the idea behind it
@dalisabe62
@dalisabe62 4 жыл бұрын
The idea behind it is the assumption that there exists a linear equivalent for any nonlinear one with the incorporation of another variable in the addition format (if you multiply t by x, you only make it more complicated) The question is: under what circumstances this Euler method is more efficient that simple trig substitution? Euler is well-known for creating such equivalence. Consider the famous Euler formula in the complex plane which maps a complex exponential to a complex trigonometric form. That formula was built on the same pattern of logic. Because integration is such an art, transformations are central to finding anti-derivative of complicated integrands.
@vitalchance5768
@vitalchance5768 3 жыл бұрын
Should I show a real elegant way of taking this integral? I think the way above is really insane. Just for the audience: it should be done in three simple steps just with one substitution. The way Boris Demidovich was doing it in 1970's.
@johngreen3543
@johngreen3543 3 жыл бұрын
Demidovich must have come from Eastern European schools as a student in his younger days. Western European instructors seem to rely to heavily on trig sub.
@OverCookedRice
@OverCookedRice 3 жыл бұрын
When you trying to find the easiest way to integrate a problem and you found this guy who makes it harder. I know how to solve this problem and after I watched this video I dont know how to start anymore.
@maalikserebryakov
@maalikserebryakov Жыл бұрын
😂😂😂😂😂😂😂 LMAO
@maalikserebryakov
@maalikserebryakov Жыл бұрын
sounds like you have trouble organising your knowledge on integral calculus. This is something I have given a lot of thought to. Want some help?
@OverCookedRice
@OverCookedRice Жыл бұрын
@@maalikserebryakov Hi, thanks for your offer. I’m just joking. I’ve passed the class and moved on for a while. Something I will never look back :)
@shadowstryder0
@shadowstryder0 7 жыл бұрын
excellent job! this was a beautiful integration.
@joseantoniogonzalezgarcia3518
@joseantoniogonzalezgarcia3518 5 жыл бұрын
Muy bien, ese cambio de Euler. Otra forma más de para completar la derivada ¡ Le felicito !
@Billy_98
@Billy_98 7 жыл бұрын
You are awesome ,dude.Thx for this video!!
@nadiralishah6889
@nadiralishah6889 4 жыл бұрын
How good you are changing the markers in the hand.
@mireksoja9063
@mireksoja9063 7 жыл бұрын
I like the video. Good job. Sometimes you could be too fast but it's fine because I can stop video for one or two seconds. Reminds me my old good times when I was a student. :)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Mirek Soja thank you. Yea pause the video whenever you need to. Hopefully overall is good.
@holyshit922
@holyshit922 6 жыл бұрын
I think he chose wrong example If he had chosen Int(sqrt(x^2-1),x) as an example he would have shown two Euler substitutions which cover all integrals in the form \int R(x,\sqrt{ax^2+bx+c})dx Substitution with leading coefficient he showed but substitution with the roots is missing If the purpose of this video is calculating this integral then video is ok If the purpose of this video is to show another substitution which is less known in US then video is not finished
@RubenHogenhout
@RubenHogenhout 6 жыл бұрын
This is much more interesting because if you have the equation of the circel Y^2 + X^2 = r^2 then as you write it as a function f(x) = (r^2 -x^2)^(1/2) you can intregrate the Circel if you calculate the intergral.
@davidseed2939
@davidseed2939 4 жыл бұрын
At 4:05 you could have made things simpler by separating the integral into intgl( x dx) + intgl( t dx)
@carce8450
@carce8450 7 жыл бұрын
what an amazing channel i just found !
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Glad you like it!
@chungys3660
@chungys3660 7 жыл бұрын
I can understand this. No wonder I'm alone.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
lol
@wr9411
@wr9411 5 жыл бұрын
It’s not hard to understand, it’s just a substitution with lots of algebra
@aryanks2167
@aryanks2167 4 жыл бұрын
we are with you
@JoshuaHillerup
@JoshuaHillerup 7 жыл бұрын
Why are you able to assume that X only has real values like that?
@marcushendriksen8415
@marcushendriksen8415 4 жыл бұрын
Because he's chosen the reals as the domain for this function. He could have extended it to all complex numbers if he'd wanted
@danny1504-g2d
@danny1504-g2d 11 ай бұрын
Very cool thank you BPRP!
@aakashjana6225
@aakashjana6225 5 жыл бұрын
Why do you hold such a big mic cant you use a more compact clip mic
@hachemimokrane2810
@hachemimokrane2810 4 жыл бұрын
Can we put x=tan(t) ?
@johngreen3543
@johngreen3543 3 жыл бұрын
Should be secant as the radicand is x^2-1.So the answer is NO.
@jdinitials
@jdinitials 5 жыл бұрын
At 12:39, how is it possible to include the square on the numerator from 1/t^2?
@stefan4321
@stefan4321 4 ай бұрын
Because 1 = 1² 😉
@peterjivotovski1828
@peterjivotovski1828 6 жыл бұрын
Would a "u substitution" work too? It seems like a much simpler solution...
@mickeygrump
@mickeygrump 4 жыл бұрын
How many of these types of problems would be on a test?
@theadel8591
@theadel8591 5 жыл бұрын
This Euler fella his name‘s all over mathematics
@MarkPaul1316
@MarkPaul1316 3 жыл бұрын
very interesting this substitution for the calculation of this integral. had solved this integral by trigonometric substitution x = tgO.
@yassine321
@yassine321 4 жыл бұрын
i never knew this method for integration anyway i gain another weapon in my magical pocket Thanks bprp !
@khiariyoussef6674
@khiariyoussef6674 7 жыл бұрын
nice !you can also : sub x with tan(u) then you integrate by parts : 1/cos^3(x) !
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Yup! That's trig sub!
@fgdhlololo1887
@fgdhlololo1887 7 жыл бұрын
khiari youssef no parts needed...
@nickharland6473
@nickharland6473 5 жыл бұрын
@@fgdhlololo1887 parts is usually used to compute the integral of 1/cos^3(x)
@daisyypoon
@daisyypoon 5 жыл бұрын
Then seems to be way easier.
@ases4320
@ases4320 7 жыл бұрын
Trig subs are way smoothier, are these formulas for paricular cases?
@JSSTyger
@JSSTyger 7 жыл бұрын
I'm pretty sure the trig substitution (sec²(x) = 1+tan²(x)) is for this particular case but the Euler substation might give you a general answer for sqrt(x+a).
@holyshit922
@holyshit922 7 жыл бұрын
For this integral Euler subsittution gives integral with less calculations
@ases4320
@ases4320 7 жыл бұрын
You sure? Maybe i'm too comfort with trig subs, i should practice a little with that to compare
@joluju2375
@joluju2375 11 ай бұрын
I can't hear the words at 0:41 : "and I'm just going to say that ??? is one".
@cipherunity
@cipherunity 6 жыл бұрын
Fantastic. Is there some other method to do this question?
@integration_IIT_ISM
@integration_IIT_ISM 2 жыл бұрын
Put x=tan theta.... Then u get integral sec³ theta... Untegrate it by parts
@voodoo_child01
@voodoo_child01 7 жыл бұрын
You can also solve this really easily by integration by parts, and it also has a shorter answer... please tell me if you want to know the solution.(it involves recursive integrals)
@osbornelawani6277
@osbornelawani6277 2 жыл бұрын
Yes
@Dharmarajan-ct5ld
@Dharmarajan-ct5ld 3 жыл бұрын
Shouldn't√(x+t)^2 be |x+t| ?
@asm.ez94
@asm.ez94 5 жыл бұрын
Hi I have integration I want help from one. How can I communicate?
@AshishSingh-753
@AshishSingh-753 5 жыл бұрын
Hey buddy your are a best mathematics teacher
@doublestarsystem
@doublestarsystem 5 жыл бұрын
In my opinion, it is more important for students to learn mathematical modelisation of real life problems, including variables identification, and finding out the general equation of a a specific problem, then let the computer do what it was built for: Tedious calculations....(I was able to calculate this integral on my smartphone within 10 seconds using a TI-89 emulator)....I still wonder if there is a physical phenomena that obeys this law ?
@TheTorito09
@TheTorito09 5 жыл бұрын
Brillant! Just one thing, did you said in the minute 5:04 "polinomio"? Cause that is not a polinomio by definition... the exponent must be natural number
@NTPCuber
@NTPCuber 7 жыл бұрын
can you teach me how to integral this ' integral of( 2/x + √(4/x - 1))^(-1/2) '
@Bicho04830
@Bicho04830 5 жыл бұрын
I tried to derive that and I could not get to the integrand. Also, I tried to use the x=tan(t) and x=sinh(t) substitutions to solve the integral and I got stuck. Please help.
@sherllymentalism4756
@sherllymentalism4756 5 жыл бұрын
How were you stuck? Maybe we could email
@ThAlEdison
@ThAlEdison Жыл бұрын
hmm if you set x=cot t, then ta n (t/2) = w, you get that x=(1-w^2)/2w So it's equivalent to doing a trig-sub followed by a Weirstrass substitution. Kinda sorta
@bowenchai8474
@bowenchai8474 5 жыл бұрын
Maybe Integration by parts is another way that can solve in a more faster way,because in the process ,add 1 and minus 1 could make a difference.
@eliteteamkiller319
@eliteteamkiller319 3 жыл бұрын
I forgot all about the existence of Euler substitution. Maybe we spent a day on it in class.
@aryansonthalia9298
@aryansonthalia9298 5 жыл бұрын
That's really nice. Would you give some questions where I can try to use it
@TheJaguar1983
@TheJaguar1983 6 жыл бұрын
Damn, that's crazy. No wonder I had so much trouble solving this on my own.
@rounakagarwal5136
@rounakagarwal5136 2 жыл бұрын
You made this super easy sums look complicated and tough
@DiegoMathemagician
@DiegoMathemagician 6 жыл бұрын
PLEASE FACTOR that 1/2 thank you :)
@sharkknight618
@sharkknight618 3 жыл бұрын
1/3*3/2
@digantabaro6572
@digantabaro6572 6 жыл бұрын
Why does the 'x+t' substitution works ?
@knochiosiedlerfreund255
@knochiosiedlerfreund255 5 жыл бұрын
well done, Steve. You pronounced Euler in the correct way. :)
@nathandaniel5451
@nathandaniel5451 7 жыл бұрын
Out of curiosity, in what situation would this method be more effective than other methods?
@holyshit922
@holyshit922 3 жыл бұрын
You can see that after this substitution its enough to reverse power rule so here it is effective
@nathandaniel5451
@nathandaniel5451 3 жыл бұрын
@@holyshit922 been awhile since I saw this video, I'm guessing the reason for my comment was that I didn't see a difference in the effectiveness of this technique over trig sub and was wondering about situations where trig sub would be impractical but this is.
@letslearnmathematics5432
@letslearnmathematics5432 3 жыл бұрын
Why we cant use power rule?
@tywarwick
@tywarwick 4 жыл бұрын
Smart approach but perhaps a little quicker by an 'x = sht' substitution
@Kalimaco
@Kalimaco 7 жыл бұрын
Could you show and prove ds^2=1/y^2(dx^2+dy^2)....
@nor557utakata9
@nor557utakata9 5 жыл бұрын
天才やん
@mohammadelsayed5715
@mohammadelsayed5715 5 жыл бұрын
Keep going, you’re awesome 🌹
@digbycrankshaft7572
@digbycrankshaft7572 3 жыл бұрын
Just one thing. At the end when you removed the absolute value signs from sqrt (x^2+1)+x what if you took the negative root of sqrt (x^2+1) then sqrt (x^2+1)+x
@OnePieceFan4765
@OnePieceFan4765 2 жыл бұрын
The square root only gives the positive root. You only need to worry about +- when it’s the solution to an equation
@digbycrankshaft7572
@digbycrankshaft7572 2 жыл бұрын
@@OnePieceFan4765 👍
@markproulx1472
@markproulx1472 6 жыл бұрын
What is the object you’re holding?
@kennkong61
@kennkong61 7 жыл бұрын
I'm too lazy to search all the comments on this channel to see if this question has been asked before: Are the presenters Ood?
@LucasGabriel-lc9ty
@LucasGabriel-lc9ty Жыл бұрын
Muito obrigado, acho q agr vou conseguir resolver uma integral q eu tô penando a quase 2,5 semanas com isso que acabo de conhecer (substituição de Euler)
@juliojossias8200
@juliojossias8200 Жыл бұрын
Qual?
@ezeldintayel6247
@ezeldintayel6247 Жыл бұрын
I did the integral by using )complex substitution where I put x =isin(theta) and it worked!!
@giampiproietti
@giampiproietti 7 жыл бұрын
And that's why the hyperpolic functions exist. You'll get the solution a lot easier with 'em.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Gigi 96 yes
@LucaScarpellini3d
@LucaScarpellini3d 5 жыл бұрын
Does "sqrt" stand for "squirting",right?
@raduvasilache6804
@raduvasilache6804 4 жыл бұрын
easier method: Write sqrt(x^2+1)= (x^2+1)/sqrt(x^2+1). You get a integral that has a simple formula(that ln|x+sqrt(x^2+1)|) and also a integral that you solve using partitions. In final you will get that the double of that integral equals sth you know and it will be that thing/2
@Magic73805
@Magic73805 6 жыл бұрын
Sir, How to solve.. Square root 1+x^4 ???? Please tell me...
@jdratlif
@jdratlif 7 жыл бұрын
This was great. Thanks.
@ujueije5762
@ujueije5762 7 жыл бұрын
Can you integrate this integral for me ? (sin(sqrt(x)+a) * e^sqrt(x)) / sqrt(x)
@rushildalal2974
@rushildalal2974 6 жыл бұрын
Substitute sqrt(x)=t. So, dx/2sqrt(x)= dt. So dx/sqrt(x)=2dt. The integral now is 2[sin(t+a)*e^t]dt. Using integration by parts, let value of integral be I. So, I= 2[sin(t+a)*e^t] - 2[integral(e^t*cos(t+a)dt)]. Using by parts again, I= 2[sin(t+a)*e^t] - 2[cos(t+a)*e^t +{integral(e^t*sin(t+a))}] . However this second integral is what we started with, so its value must be I. So the equation becomes I= 2e^t[sin(t+a)-cos(t+a)] + 2I. Solving, we get I = 2e^t[cos(t+a) - sin(t+a)], t=sqrt(x) So the answer is 2e^sqrt(x)[cos(sqrt(x))-sin(sqrt(x))] + c
@mohamadsharafeddinbabouji8728
@mohamadsharafeddinbabouji8728 4 жыл бұрын
I do have one question What made you think in the first place that you have to choose x+t instead of only t ?? Otherwise it was amazing algebra and magic way of thinking ☺
@SimsHacks
@SimsHacks 2 жыл бұрын
Cause it works. He didn't think of it,it's a well-known sub.
@박주은-f4x
@박주은-f4x 3 жыл бұрын
Thank you so much!! I love this vedio
@Treegrower
@Treegrower 7 жыл бұрын
Very interesting, I've never seen this method before! However, I think I'll stick to trig-sub. This looks hard!
@ronvaiz123
@ronvaiz123 7 жыл бұрын
would you show how to integrate sqrt of actanx?
@NotYourAverageNothing
@NotYourAverageNothing 7 жыл бұрын
You can't. It has no Elementary solution.
@ronvaiz123
@ronvaiz123 7 жыл бұрын
Ty
@blackpenredpen
@blackpenredpen 7 жыл бұрын
ron vaizman if u mean sqrt(tan(x))... I might do that one day when I have a much bigger board :)
@ronvaiz123
@ronvaiz123 7 жыл бұрын
No my friend..i meant to sqrt(tan^-1(x))
@blackpenredpen
@blackpenredpen 7 жыл бұрын
that is not possible, just like N0tY0ur4v3r4g3N0th1ng said. but sqrt(tan(x)) actually is
@abdouabdou2647
@abdouabdou2647 4 жыл бұрын
Great Mr 👍
@Kudravets-Diana
@Kudravets-Diana 3 жыл бұрын
How to do the integral of squre ((0.5)^2+x^2) ?
@sourinchatterjee597
@sourinchatterjee597 6 жыл бұрын
What to use by eular method when the integration is (1-x^2)^1/2?
@holyshit922
@holyshit922 5 жыл бұрын
That is what i mean that this video is not finished
@thatwhichislearnt751
@thatwhichislearnt751 2 жыл бұрын
You can do (1-x^2)^1/2 = (1-x)*t This rationalizes the integrand. Or you can factor out i=(-1)^1/2 and use the same as in the video, the complex numbers disappear at the end, since (1-x^2)^1/2=i*(x^2-1)^1/2
@holyshit922
@holyshit922 6 жыл бұрын
I dont know why you omit integration of irrational functions - so called integration of binomial differentials (Tschebyshov substitutions, Tchebyshov proved that only three cases have elementary antiderivative) - integration functions with square root of quadratic trinomial using Euler substitutions Euler substitutions allow you to find u subsitutions which look like Weierstrass substitution As I mention earlier there are three Euler substitution and this substitution do not cover all cases To cover all cases we need also Euler substitution with the roots sqrt(a(x-x_1)(x-x_2))=(x-x_1)t Substitutions which look like Euler substitution we can get from simple exercise with right triangle Draw right triangle and label it as in invers trig substitution, then draw bisector of angle complementary to theta You will get another triangle after drawing bisector In this new triangle find angle pi/4+theta/2 and calculate its tangent
Elementary vs. Non-Elementary integral battles! (beyond regular calculus)
1:09:04
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
Use EULER'S SUBSTITUTION not TRIG SUBSTITUTION!
15:05
Michael Penn
Рет қаралды 30 М.
integral of sqrt(tan(x)) by brute force
19:41
blackpenredpen
Рет қаралды 553 М.
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 429 М.
Solving 'impossible' integrals in seconds
6:35
MindYourDecisions
Рет қаралды 1,3 МЛН
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
integral of sqrt of tanx
25:46
Prime Newtons
Рет қаралды 38 М.
The Most Beautiful Equation
13:39
Digital Genius
Рет қаралды 747 М.
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН