trigsubs are way easier typically but I may do it this way in my D.E. class just to make my teacher think im smarter lol.
@blackpenredpen7 жыл бұрын
that works!
@holyshit9227 жыл бұрын
Here after Euler's substitution and some linear properties you will get integal of power function To see that not always trig subsittutions are faster calculate integral Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) or Int(\frac{dx}{x\sqrt{2x^2-2x+1}}) If we use first Euler substitution for integral Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) we will get integral which can be easily calculated mentally but if we use third substitution (with the roots) we should use Ostrogradsky method for isolating rational part of integral and calculate twelve coefficients If you still want trig substitutions you need three substitutions (actually two of them are inverse trig substitution)
@holyshit9227 жыл бұрын
Yeah is there someting easier then power rule and linearity of an integral , because it we will get after Euler substitution in this integral
@Linus-ex3xs6 жыл бұрын
Jacek Soplica you do LaTeX right?
@BY-sh6gt5 жыл бұрын
I use multiple u-subs on the exam and got the exact same answer... but that's too much subs and after i submitted my answer i just realised that trig-sub 'exists' 😂
@swedishmathtutor61047 жыл бұрын
And all of you hating and saying why don't you do trig sub. This is the beauty of math. 1. Two different methods arrive at the same solution and 2. There exists a much more elegant approach. Now imagine this was the way you were taught and someone showed you trig sub. What would you say?
@marcushendriksen84156 жыл бұрын
"That's pretty awesome!" (but then again, I do appreciate the fact that there are multiple ways to skin mathematical cats)
@arjavgarg58015 жыл бұрын
Swedish Math Tutor I would say, why didn’t you tell me this first?
@peorakef3 жыл бұрын
id say: you cheater!
@SimsHacks2 жыл бұрын
Also, this sub works always, not the case with trig sub, where you have troubles with domain if you put x=tan(theta) for example.
@g0rgth3b0rg7 жыл бұрын
Rewriting (1/t^2 - t^2) as a difference of two squares, then multiplying top and bottom of the fraction by the conjugate, only to create a difference of two square conjugates is beautiful and amazingly clever.
@blackpenredpen7 жыл бұрын
Greg Brown thank you!!!!
@allaincumming63135 жыл бұрын
Sí, se soltó la greña lmL
@ekxo11263 жыл бұрын
@@allaincumming6313 "Yes, the lmL hair was released" thanks google translate
@farazriyaz90783 жыл бұрын
@@ekxo1126 I wonder where can I buy the rumored lmL hair...
@otromenfeick93823 жыл бұрын
@@ekxo1126 I'm a native spanish speaker, that's indeed what it means. The commentary itself is what doesn't make sense lol
@mohan153doshi7 жыл бұрын
This Euler's sub method of solving this rather simple integral was really fascinating and I just loved the algebra involved here. The ugly radicals just vanish like pure magic. Who said that Math is not magic? You just proved that math can be magical and beautiful. Thanks for this awesome substitution. It can make anyone's day (anyone who likes math) beautiful. In a parallel universe, I hope I come across a math teacher like you in real life instead of the virtual interaction here. I would surely feel blessed then.
@jif77075 жыл бұрын
What's is the "ugly radical"?
@maalikserebryakov2 жыл бұрын
@@jif7707 ur mum
@toopytoopy85475 жыл бұрын
*Try to subtitute x by the hyperblic sinus : sinh(t)* as a remind, sinh(t) = (exp(t)-exp(-t))/2 ; cosh(t) = (exp(t)+exp(-t))/2 ; sinh'(t)= cosh(t) then if x = sinh(t) , we have t=ln(x+sqrt(1+x²)) _(easy to obtain in two lines!)_ So, *1+x² = 1+sinh(t)² = cosh(t)²* and *dx= cosh(t) dt* let's note int(f(x)dx ,0 ,a ) the integral of a function f(x) between 0 and a then int(sqrt(1+x²) dx ,0,a) = int( cosh(t)² dt, 0, ln(a+sqrt(1+a²)) *## i will note b := ln(a+sqrt(1+a²) which means that sinh(b) = a##* But we have cosh(t)² = (exp(2t)+exp(-2t)+2) / 4 so int( cosh(t)² dt, 0, b) = [exp(2t)/8 - exp(-2t) /8 + t/2] # between 0 and b = exp(2b)/8 - exp(-2b)/8 +b/2 Moreover exp(2b)-exp(-2b) = (exp(b)+exp(-b)) (exp(b)-exp(-b)) = 4 sinh(b) cosh(b) and we know that cosh(b) = sqrt(1+sinh(b)²) then int( cosh(t)² dt, 0, b) = ( sinh(b) . sqrt(1+sinh(b)²) ) /2 + b/2 . As we have a = sinh(b) then : int( cosh(t)² dt, 0, b) = (a . sqrt(1+a²))/2 + ln(a+sqrt(1+a²))/2 Which means that the integral function of sqrt(1+x²) is *(x sqrt(1+x²))/2 + ln(x+sqrt(1+x²))/2* AS FOUND IN THE VIDEO Notice that if you deal well with hyberbolic trigonometry this way of calculating the integral is faster and easier !!
@allaincumming63135 жыл бұрын
In this case: Hyperbolic sub>Trig sub>Euler sub
@samevanovitch33625 жыл бұрын
You are amazing and I was wondering why he didn't use the change X = SINH(t)
@최문규-o4d5 жыл бұрын
Wow U are genius
@Rosie68574 жыл бұрын
Another substitution that works is x = tan t
@peamutbubber Жыл бұрын
Nah tany = x is way faster
@neomooooo4 жыл бұрын
Excellent video! I prefer x=sinh(t). Hyperbolic trig sub is an elegant approach, and is a middle ground between Eulers trick, and classic trig sub.
@maalikserebryakov Жыл бұрын
Not really
@DougCube7 жыл бұрын
Two minor issues... 1) You never justify swapping the order of the absolute-value and -1 power at 17:12. 2) At 19:38, the reason why the inside is positive and you can drop the absolute-value is not complete. If you have (A+B) and A > B, you cannot conclude (A+B) > 0. Counterexample: A=1, B=-2. (The missing reason is that if x is negative, the A portion is greater than -x to get the sum to be positive.)
@antimatter23766 жыл бұрын
1st the reason he can brirng the -1 to the t as a power is because of a ln property. 2nd it's different because you square x and add 1 inside a square root and subtract x. if you just have sqrt(x^2)-x then it's zero. But instead we have the +1 so sqrt(x^2+1)-x is always positive. You're example doesn't consider the square and sqrt.
@Jamelele7 жыл бұрын
when do you specifically need to use euler's sub? That'd be interesting :)
@blackpenredpen7 жыл бұрын
It was a question sent by one of my subscribers
@maalikserebryakov Жыл бұрын
You can use it whenever there is a specific composition of a quadratic inside a radical But when the quadratic contains the x term, trigsub will no longer work. So you will use euler sub then.
@sandile138095 жыл бұрын
This made me appreciate trig sub
@johngreen35433 жыл бұрын
Trig subs can be avoided in many cases. Particularly with radical expressions with x2 - 1, x^2 +1 and 1-x^2 in the radicand. Do not use trig for them
@marvalmej007 Жыл бұрын
Genuinely nice explanation! This is amazing. Math is beautiful and magic, you are an amazing magician. Kudos!!
@diamonddave26227 жыл бұрын
looks like we are now black pen, red pen and blue pen!
@blackpenredpen7 жыл бұрын
Diamond Dave yup!
@papajack22057 жыл бұрын
Diamond Dave there was already a video with a green pen included. I guess crazy things are going on these days..
Every time I see Euler in the title I'm like "Daaaamn he EVEN has a substitution????"
@lebgdu17pktudorpa235 жыл бұрын
Little note : 1-t^2 / 2t , is actually the formula (when you let t=tan(theta) ) for 1/tan(2*theta) . This method thus shares a relation with trig sub anyway :) Very nice video!
@complex314i5 жыл бұрын
t^-2-t^2 = (t^-1-t)(t^-1+t) = 2x(t^-1+t) = 2x(t^-1-t+2t) = 2x(2x+2t) = 4x(x+t) = 4x(x^21)^(1/2) Easier to do difference of squares while still in t.
@gloystar6 жыл бұрын
Ohh! Thank you so much for this video that answered my question. Good job bro, keep it up!
@isobar58576 жыл бұрын
Geez...you have the patience of a saint!
@goedelite4 жыл бұрын
The frequency of advertising interruptions for an educational feature is disgraceful. I would remember who the advertisers are - not to buy their products but to avoid them!
@anoopkumar-dt7wp6 жыл бұрын
We had a sir who taught it like this x/2(question)+constant/2(integral of reciprocal of question)
@johnmahoney58056 жыл бұрын
Never thought I'd say that I'd prefer to do trigonometric substitution, but here we are.
@maalikserebryakov2 жыл бұрын
Trig sub is not useful when there are many other terms apart from the radical This method works always to simplify the integrand
@schoob693 жыл бұрын
Just an awestruck highschool calc student here, but, at 14:32, why do the conjugates cancel in the denominator? I get that x^2 + 1 - x^2 equals one but what about the second sq root (x^2 + 1) + x term? What happens to that?
@johngreen35433 жыл бұрын
The best method is not either trig sub or euler sub. The best method is integration by parts. Let u =(x^2+1)^1/2 and dv = dx. then a little add and subtract will give the original integral plus a familiar integral. Give it a try.
@zoso256 жыл бұрын
While making the initial substitution for X+t, couldn't we just integrate Xdx and tdx in parts and then substitute dx with the dt form? That would simplify things I guess. We won't need to substitute t with X form for atleast one part. I'm probably not thinking this through and might be overlooking something.
@mbulut73 жыл бұрын
I was going to say to the publisher, "hey bro, you just missed the beauty of this method: first part is just (x^2)/2, and you do just t*dx part". I said let me first scan through the comments not to repeat the same thing. then I saw your comment. You are damn right, that is the way to do this integration.
@holyshit9223 жыл бұрын
No you should express x and sqrt as a function of t and then differentiate x with respect of t
@SimsHacks4 жыл бұрын
We learn it since it is universal. Trig sub doesn't always work if you have other things apart the sqrt in the integral.
@maalikserebryakov2 жыл бұрын
I see. Thank you. This will help me immensely
@bmrm20047 жыл бұрын
easier way: just replace x with sinh (t)
@nejlaakyuz40255 жыл бұрын
Or tan(t)
@1_adityasingh5 жыл бұрын
@@nejlaakyuz4025 then you have to integrate sec (x)
@me_hanics4 жыл бұрын
@@1_adityasingh integrate of secant is "known", this channel has a video on it
@tikz.-37384 жыл бұрын
@@me_hanics it's ln(tan(X)+sec(X)) it's a pretty standard integral should be remembered probably
@digroot4 жыл бұрын
If x^2 + 2 then your method might not work if you sub sinh(x), Euler method seems to be working in x^2 + a, maybe x^3 + a, not sure yet
@lemonlimeGOD7 жыл бұрын
Wow, you were right. That WAS really cool!
@blackpenredpen7 жыл бұрын
Alex Behlen I am glad that you like it!!!
@janderson27097 жыл бұрын
Why does the initial equation equal X+t?
@JoshuaHillerup7 жыл бұрын
Jacob Anderson he just declared it is. You're allowed to do that when you are defining a new variable t.
@erinasama49767 жыл бұрын
Jacob Anderson because it must be something bigger than x
@sherllymentalism47565 жыл бұрын
Even negatively bigger 😂
@neuralwarp5 жыл бұрын
The wording would be "select t such that sqrt(x2+1) = x+t".
@holyshit9226 жыл бұрын
In polish and russian schools Euler's substitutions was standard ones f.e can be found in russian textbook Курс дифференциального и интегрального исчисления Григо́рий Миха́йлович Фихтенго́льц with short geometric interpretation
@pedrojosealbarracinvargas75336 жыл бұрын
¿cuál de las 3 sustituciones Euler es mejor? ¿algún consejo?
@MrOLOY-mj8fi7 жыл бұрын
HI was it possible to simply use x=sh(t) ?
@IzayoiMeiHigu7 жыл бұрын
can you make a video demonstrating the Euler substitution??? I don't want to memorize without understanding why is that possible, but I can't find the demonstration on Wikipedia ... :(
@holyshit9227 жыл бұрын
Говоришь по русский ? Hablas espanol ? They have recorded video about Euler's substitutions
@IzayoiMeiHigu7 жыл бұрын
si hablo español, como lo notaste? :O
@holyshit9227 жыл бұрын
Sprichst du deutsch ? I found Euler's algebra book in which is rationalization of square root of quadratic The guy whose video i had watched changed state of his videos to private but russian is even better because you have video on youtube and also quite good book Курс дифференциального и интегрального исчисления Фихтенгольц Г М Euler's book Leonheardi Euleri opera omnia www.math.uni-bielefeld.de/~sieben/Euler_Algebra.ocr.pdf page 349
@IzayoiMeiHigu7 жыл бұрын
thanks :D
@holyshit9227 жыл бұрын
Watch also separation of rational part of the integral of rational function (Ostrogradsky method of undetermined coeffincients ) because it can be useful after Euler substitution Your analysis of Euler substitution start with cutting curve y^2=ax^2+bx+c with secant line
@zahari20 Жыл бұрын
The best way to solve this integral is by setting x = sinh(t). Then we have Integral (cosh(t)^2 dt and here cosh(t)^2 = 1/2(1 + cosh(2t)) etc.
@chazzaca4 жыл бұрын
At 17:00 I would have just put in t=sqrt(x^2+1) - x and be done with it!! Other than that great video and thanks for showing us that Euler rules!! :-)
@ahmeddamour3661 Жыл бұрын
Chapeau ! 😊 On peut aussi faire X = Tan (téta) ... par la substitution trigonométrique.
@swedishmathtutor61047 жыл бұрын
Never seen that method! Very interesting. Would like to see the idea behind it
@dalisabe624 жыл бұрын
The idea behind it is the assumption that there exists a linear equivalent for any nonlinear one with the incorporation of another variable in the addition format (if you multiply t by x, you only make it more complicated) The question is: under what circumstances this Euler method is more efficient that simple trig substitution? Euler is well-known for creating such equivalence. Consider the famous Euler formula in the complex plane which maps a complex exponential to a complex trigonometric form. That formula was built on the same pattern of logic. Because integration is such an art, transformations are central to finding anti-derivative of complicated integrands.
@vitalchance57683 жыл бұрын
Should I show a real elegant way of taking this integral? I think the way above is really insane. Just for the audience: it should be done in three simple steps just with one substitution. The way Boris Demidovich was doing it in 1970's.
@johngreen35433 жыл бұрын
Demidovich must have come from Eastern European schools as a student in his younger days. Western European instructors seem to rely to heavily on trig sub.
@OverCookedRice3 жыл бұрын
When you trying to find the easiest way to integrate a problem and you found this guy who makes it harder. I know how to solve this problem and after I watched this video I dont know how to start anymore.
@maalikserebryakov Жыл бұрын
😂😂😂😂😂😂😂 LMAO
@maalikserebryakov Жыл бұрын
sounds like you have trouble organising your knowledge on integral calculus. This is something I have given a lot of thought to. Want some help?
@OverCookedRice Жыл бұрын
@@maalikserebryakov Hi, thanks for your offer. I’m just joking. I’ve passed the class and moved on for a while. Something I will never look back :)
@shadowstryder07 жыл бұрын
excellent job! this was a beautiful integration.
@joseantoniogonzalezgarcia35185 жыл бұрын
Muy bien, ese cambio de Euler. Otra forma más de para completar la derivada ¡ Le felicito !
@Billy_987 жыл бұрын
You are awesome ,dude.Thx for this video!!
@nadiralishah68894 жыл бұрын
How good you are changing the markers in the hand.
@mireksoja90637 жыл бұрын
I like the video. Good job. Sometimes you could be too fast but it's fine because I can stop video for one or two seconds. Reminds me my old good times when I was a student. :)
@blackpenredpen7 жыл бұрын
Mirek Soja thank you. Yea pause the video whenever you need to. Hopefully overall is good.
@holyshit9226 жыл бұрын
I think he chose wrong example If he had chosen Int(sqrt(x^2-1),x) as an example he would have shown two Euler substitutions which cover all integrals in the form \int R(x,\sqrt{ax^2+bx+c})dx Substitution with leading coefficient he showed but substitution with the roots is missing If the purpose of this video is calculating this integral then video is ok If the purpose of this video is to show another substitution which is less known in US then video is not finished
@RubenHogenhout6 жыл бұрын
This is much more interesting because if you have the equation of the circel Y^2 + X^2 = r^2 then as you write it as a function f(x) = (r^2 -x^2)^(1/2) you can intregrate the Circel if you calculate the intergral.
@davidseed29394 жыл бұрын
At 4:05 you could have made things simpler by separating the integral into intgl( x dx) + intgl( t dx)
@carce84507 жыл бұрын
what an amazing channel i just found !
@blackpenredpen7 жыл бұрын
Glad you like it!
@chungys36607 жыл бұрын
I can understand this. No wonder I'm alone.
@blackpenredpen7 жыл бұрын
lol
@wr94115 жыл бұрын
It’s not hard to understand, it’s just a substitution with lots of algebra
@aryanks21674 жыл бұрын
we are with you
@JoshuaHillerup7 жыл бұрын
Why are you able to assume that X only has real values like that?
@marcushendriksen84154 жыл бұрын
Because he's chosen the reals as the domain for this function. He could have extended it to all complex numbers if he'd wanted
@danny1504-g2d11 ай бұрын
Very cool thank you BPRP!
@aakashjana62255 жыл бұрын
Why do you hold such a big mic cant you use a more compact clip mic
@hachemimokrane28104 жыл бұрын
Can we put x=tan(t) ?
@johngreen35433 жыл бұрын
Should be secant as the radicand is x^2-1.So the answer is NO.
@jdinitials5 жыл бұрын
At 12:39, how is it possible to include the square on the numerator from 1/t^2?
@stefan43214 ай бұрын
Because 1 = 1² 😉
@peterjivotovski18286 жыл бұрын
Would a "u substitution" work too? It seems like a much simpler solution...
@mickeygrump4 жыл бұрын
How many of these types of problems would be on a test?
@theadel85915 жыл бұрын
This Euler fella his name‘s all over mathematics
@MarkPaul13163 жыл бұрын
very interesting this substitution for the calculation of this integral. had solved this integral by trigonometric substitution x = tgO.
@yassine3214 жыл бұрын
i never knew this method for integration anyway i gain another weapon in my magical pocket Thanks bprp !
@khiariyoussef66747 жыл бұрын
nice !you can also : sub x with tan(u) then you integrate by parts : 1/cos^3(x) !
@blackpenredpen7 жыл бұрын
Yup! That's trig sub!
@fgdhlololo18877 жыл бұрын
khiari youssef no parts needed...
@nickharland64735 жыл бұрын
@@fgdhlololo1887 parts is usually used to compute the integral of 1/cos^3(x)
@daisyypoon5 жыл бұрын
Then seems to be way easier.
@ases43207 жыл бұрын
Trig subs are way smoothier, are these formulas for paricular cases?
@JSSTyger7 жыл бұрын
I'm pretty sure the trig substitution (sec²(x) = 1+tan²(x)) is for this particular case but the Euler substation might give you a general answer for sqrt(x+a).
@holyshit9227 жыл бұрын
For this integral Euler subsittution gives integral with less calculations
@ases43207 жыл бұрын
You sure? Maybe i'm too comfort with trig subs, i should practice a little with that to compare
@joluju237511 ай бұрын
I can't hear the words at 0:41 : "and I'm just going to say that ??? is one".
@cipherunity6 жыл бұрын
Fantastic. Is there some other method to do this question?
@integration_IIT_ISM2 жыл бұрын
Put x=tan theta.... Then u get integral sec³ theta... Untegrate it by parts
@voodoo_child017 жыл бұрын
You can also solve this really easily by integration by parts, and it also has a shorter answer... please tell me if you want to know the solution.(it involves recursive integrals)
@osbornelawani62772 жыл бұрын
Yes
@Dharmarajan-ct5ld3 жыл бұрын
Shouldn't√(x+t)^2 be |x+t| ?
@asm.ez945 жыл бұрын
Hi I have integration I want help from one. How can I communicate?
@AshishSingh-7535 жыл бұрын
Hey buddy your are a best mathematics teacher
@doublestarsystem5 жыл бұрын
In my opinion, it is more important for students to learn mathematical modelisation of real life problems, including variables identification, and finding out the general equation of a a specific problem, then let the computer do what it was built for: Tedious calculations....(I was able to calculate this integral on my smartphone within 10 seconds using a TI-89 emulator)....I still wonder if there is a physical phenomena that obeys this law ?
@TheTorito095 жыл бұрын
Brillant! Just one thing, did you said in the minute 5:04 "polinomio"? Cause that is not a polinomio by definition... the exponent must be natural number
@NTPCuber7 жыл бұрын
can you teach me how to integral this ' integral of( 2/x + √(4/x - 1))^(-1/2) '
@Bicho048305 жыл бұрын
I tried to derive that and I could not get to the integrand. Also, I tried to use the x=tan(t) and x=sinh(t) substitutions to solve the integral and I got stuck. Please help.
@sherllymentalism47565 жыл бұрын
How were you stuck? Maybe we could email
@ThAlEdison Жыл бұрын
hmm if you set x=cot t, then ta n (t/2) = w, you get that x=(1-w^2)/2w So it's equivalent to doing a trig-sub followed by a Weirstrass substitution. Kinda sorta
@bowenchai84745 жыл бұрын
Maybe Integration by parts is another way that can solve in a more faster way,because in the process ,add 1 and minus 1 could make a difference.
@eliteteamkiller3193 жыл бұрын
I forgot all about the existence of Euler substitution. Maybe we spent a day on it in class.
@aryansonthalia92985 жыл бұрын
That's really nice. Would you give some questions where I can try to use it
@TheJaguar19836 жыл бұрын
Damn, that's crazy. No wonder I had so much trouble solving this on my own.
@rounakagarwal51362 жыл бұрын
You made this super easy sums look complicated and tough
@DiegoMathemagician6 жыл бұрын
PLEASE FACTOR that 1/2 thank you :)
@sharkknight6183 жыл бұрын
1/3*3/2
@digantabaro65726 жыл бұрын
Why does the 'x+t' substitution works ?
@knochiosiedlerfreund2555 жыл бұрын
well done, Steve. You pronounced Euler in the correct way. :)
@nathandaniel54517 жыл бұрын
Out of curiosity, in what situation would this method be more effective than other methods?
@holyshit9223 жыл бұрын
You can see that after this substitution its enough to reverse power rule so here it is effective
@nathandaniel54513 жыл бұрын
@@holyshit922 been awhile since I saw this video, I'm guessing the reason for my comment was that I didn't see a difference in the effectiveness of this technique over trig sub and was wondering about situations where trig sub would be impractical but this is.
@letslearnmathematics54323 жыл бұрын
Why we cant use power rule?
@tywarwick4 жыл бұрын
Smart approach but perhaps a little quicker by an 'x = sht' substitution
@Kalimaco7 жыл бұрын
Could you show and prove ds^2=1/y^2(dx^2+dy^2)....
@nor557utakata95 жыл бұрын
天才やん
@mohammadelsayed57155 жыл бұрын
Keep going, you’re awesome 🌹
@digbycrankshaft75723 жыл бұрын
Just one thing. At the end when you removed the absolute value signs from sqrt (x^2+1)+x what if you took the negative root of sqrt (x^2+1) then sqrt (x^2+1)+x
@OnePieceFan47652 жыл бұрын
The square root only gives the positive root. You only need to worry about +- when it’s the solution to an equation
@digbycrankshaft75722 жыл бұрын
@@OnePieceFan4765 👍
@markproulx14726 жыл бұрын
What is the object you’re holding?
@kennkong617 жыл бұрын
I'm too lazy to search all the comments on this channel to see if this question has been asked before: Are the presenters Ood?
@LucasGabriel-lc9ty Жыл бұрын
Muito obrigado, acho q agr vou conseguir resolver uma integral q eu tô penando a quase 2,5 semanas com isso que acabo de conhecer (substituição de Euler)
@juliojossias8200 Жыл бұрын
Qual?
@ezeldintayel6247 Жыл бұрын
I did the integral by using )complex substitution where I put x =isin(theta) and it worked!!
@giampiproietti7 жыл бұрын
And that's why the hyperpolic functions exist. You'll get the solution a lot easier with 'em.
@blackpenredpen7 жыл бұрын
Gigi 96 yes
@LucaScarpellini3d5 жыл бұрын
Does "sqrt" stand for "squirting",right?
@raduvasilache68044 жыл бұрын
easier method: Write sqrt(x^2+1)= (x^2+1)/sqrt(x^2+1). You get a integral that has a simple formula(that ln|x+sqrt(x^2+1)|) and also a integral that you solve using partitions. In final you will get that the double of that integral equals sth you know and it will be that thing/2
@Magic738056 жыл бұрын
Sir, How to solve.. Square root 1+x^4 ???? Please tell me...
@jdratlif7 жыл бұрын
This was great. Thanks.
@ujueije57627 жыл бұрын
Can you integrate this integral for me ? (sin(sqrt(x)+a) * e^sqrt(x)) / sqrt(x)
@rushildalal29746 жыл бұрын
Substitute sqrt(x)=t. So, dx/2sqrt(x)= dt. So dx/sqrt(x)=2dt. The integral now is 2[sin(t+a)*e^t]dt. Using integration by parts, let value of integral be I. So, I= 2[sin(t+a)*e^t] - 2[integral(e^t*cos(t+a)dt)]. Using by parts again, I= 2[sin(t+a)*e^t] - 2[cos(t+a)*e^t +{integral(e^t*sin(t+a))}] . However this second integral is what we started with, so its value must be I. So the equation becomes I= 2e^t[sin(t+a)-cos(t+a)] + 2I. Solving, we get I = 2e^t[cos(t+a) - sin(t+a)], t=sqrt(x) So the answer is 2e^sqrt(x)[cos(sqrt(x))-sin(sqrt(x))] + c
@mohamadsharafeddinbabouji87284 жыл бұрын
I do have one question What made you think in the first place that you have to choose x+t instead of only t ?? Otherwise it was amazing algebra and magic way of thinking ☺
@SimsHacks2 жыл бұрын
Cause it works. He didn't think of it,it's a well-known sub.
@박주은-f4x3 жыл бұрын
Thank you so much!! I love this vedio
@Treegrower7 жыл бұрын
Very interesting, I've never seen this method before! However, I think I'll stick to trig-sub. This looks hard!
@ronvaiz1237 жыл бұрын
would you show how to integrate sqrt of actanx?
@NotYourAverageNothing7 жыл бұрын
You can't. It has no Elementary solution.
@ronvaiz1237 жыл бұрын
Ty
@blackpenredpen7 жыл бұрын
ron vaizman if u mean sqrt(tan(x))... I might do that one day when I have a much bigger board :)
@ronvaiz1237 жыл бұрын
No my friend..i meant to sqrt(tan^-1(x))
@blackpenredpen7 жыл бұрын
that is not possible, just like N0tY0ur4v3r4g3N0th1ng said. but sqrt(tan(x)) actually is
@abdouabdou26474 жыл бұрын
Great Mr 👍
@Kudravets-Diana3 жыл бұрын
How to do the integral of squre ((0.5)^2+x^2) ?
@sourinchatterjee5976 жыл бұрын
What to use by eular method when the integration is (1-x^2)^1/2?
@holyshit9225 жыл бұрын
That is what i mean that this video is not finished
@thatwhichislearnt7512 жыл бұрын
You can do (1-x^2)^1/2 = (1-x)*t This rationalizes the integrand. Or you can factor out i=(-1)^1/2 and use the same as in the video, the complex numbers disappear at the end, since (1-x^2)^1/2=i*(x^2-1)^1/2
@holyshit9226 жыл бұрын
I dont know why you omit integration of irrational functions - so called integration of binomial differentials (Tschebyshov substitutions, Tchebyshov proved that only three cases have elementary antiderivative) - integration functions with square root of quadratic trinomial using Euler substitutions Euler substitutions allow you to find u subsitutions which look like Weierstrass substitution As I mention earlier there are three Euler substitution and this substitution do not cover all cases To cover all cases we need also Euler substitution with the roots sqrt(a(x-x_1)(x-x_2))=(x-x_1)t Substitutions which look like Euler substitution we can get from simple exercise with right triangle Draw right triangle and label it as in invers trig substitution, then draw bisector of angle complementary to theta You will get another triangle after drawing bisector In this new triangle find angle pi/4+theta/2 and calculate its tangent