solution to the logarithmic triangle

  Рет қаралды 242,176

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 390
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Click here to check out Brilliant 👉 brilliant.org/blackpenredpen/ (20% off with this link!)
@lapicethelilsusboy491
@lapicethelilsusboy491 2 жыл бұрын
I'll ask again: Are you okay?
@leonardobarrera2816
@leonardobarrera2816 2 жыл бұрын
Thanks for the video
@jamespat7975
@jamespat7975 2 жыл бұрын
How to solve this integral question ? Integral [ ( 1/x^2 * (1+x^4)^0.5) ] dx ?
@Abdul-ot3lu
@Abdul-ot3lu 2 жыл бұрын
Is brilliant worh
@hustler3of4culture3
@hustler3of4culture3 2 жыл бұрын
Brilliant
@louisvictor3473
@louisvictor3473 2 жыл бұрын
Log triangles are naturally very hard to manipulate, on account of their large size and weight.
@fasebingterfe6354
@fasebingterfe6354 2 жыл бұрын
I agree
@U014B
@U014B 2 жыл бұрын
I never wood've thought about that.
@theabyss5647
@theabyss5647 2 жыл бұрын
I think it's not because they're heavy but because of their temperature. We're taking about an ln triangle and liquid nitrogen is not mechanically problematic.
@davidbrisbane7206
@davidbrisbane7206 2 жыл бұрын
Log triangles are good for the environment. They trap a lot of CO2 in them.
@chitlitlah
@chitlitlah 2 жыл бұрын
"naturally" But natural logs are a bit easier to work with than other logs.
@bartekabuz855
@bartekabuz855 2 жыл бұрын
Fun fact: If you try the same thing with sine you will get x=pi/6 and with cosine x=pi/4
@joaomatos6598
@joaomatos6598 2 жыл бұрын
How?
@JirivandenAssem
@JirivandenAssem 2 жыл бұрын
Probs u use trig. Identities
@AlchemistOfNirnroot
@AlchemistOfNirnroot 2 жыл бұрын
For a sin(x), sin(2x) and sin(3x) triangle and then you got the cos(x) solution as a result of the trig identity?
@astha_yadav
@astha_yadav 2 жыл бұрын
If u differentiate at the right triangle square law thing, removing the powers, then raise from e as powers removing ln , then solve the quad eqn u get 3/2 which is a correct soln Edit: actually there is some thing wrong with this method though i haven't figured out what I accidentally checked for lnx + ln2x = ln3x rather than the square form, so the soln is wrong Not deleting incase someone wishes to help out
@JirivandenAssem
@JirivandenAssem 2 жыл бұрын
@@astha_yadav who asked🤣he asks about the trig version
@mathmathician8250
@mathmathician8250 2 жыл бұрын
You should change the side length to ln(3x), ln(4x) and ln(5x) to make people to remind of the famous 3-4-5 right angled triangle. :)
@artsmith1347
@artsmith1347 Жыл бұрын
WolframAlpha gives two solutions for log^2(3 x) + log^2(4 x) = log^2(5 x) x≈0.25848 x≈0.67166
@thexoxob9448
@thexoxob9448 Жыл бұрын
The 0.25 solution doesn't work because 3 times that is less than 1.. which means length is negative, which is impossible
@MasterofNoobs69
@MasterofNoobs69 Жыл бұрын
@@thexoxob9448it is possible with complex numbers, and you are then squaring it to make it real. The i-1-0 triangle is an example of absurd triangles you can create like this. The math works out, even if the geometry doesn’t.
@zzciobzz2963
@zzciobzz2963 11 ай бұрын
​@@thexoxob9448less than 1 isn't negative. it's between 0 and 1
@Gust52
@Gust52 2 жыл бұрын
The "Fading In" Intro is so much better!
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thanks!!!
@CaradhrasAiguo49
@CaradhrasAiguo49 2 жыл бұрын
5:12 the nice little detail about completing the square here is if you do NOT simplify ln(2) - ln(3) to ln(2/3), but add [ln(2) - ln(3)]^2 to [ln(3)]^2 - [ln(2)]^2 on the RHS, the [ln(2)]^2 will CANCEL 10:00 an approximation is x = 3.8549
@Jack_Callcott_AU
@Jack_Callcott_AU 2 жыл бұрын
@CaradhrasAiguo49 I agree, that is the number I got! 👍
@Rex-xj4dj
@Rex-xj4dj 2 жыл бұрын
I did that but still got about 2.45
@general_paul
@general_paul Жыл бұрын
I agree with your result
@pietrofubini7833
@pietrofubini7833 2 жыл бұрын
I finally managed to get to the solution of the problem all by my self I feel so proud, it is all thanks to your videos
@davidbrisbane7206
@davidbrisbane7206 2 жыл бұрын
I only feel relieved when I solve maths problems.
@joebrinson5040
@joebrinson5040 2 жыл бұрын
BPRP, you are my favorite math teacher. Thanks for another video.
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thank u!
@petek1365
@petek1365 2 жыл бұрын
I started working this out myself until I reached the quadratic in LnX at which point I realized there was a much easier way to find the solution. All I had to do was watch the video and bprp would work it out for me :)
@dimitrisg63
@dimitrisg63 2 жыл бұрын
great video! I have been watching you since 2018 and your content is constantly getting better! good job mr. bprp.
@dimitrispapadakis2122
@dimitrispapadakis2122 2 жыл бұрын
Είμαστε συνονόματοι και έχουμε την ίδια εικόνα προφίλ :)
@junaidhasrat11
@junaidhasrat11 2 жыл бұрын
@@dimitrispapadakis2122 don't tell me this is your alt account
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thank you!
@dimitrisg63
@dimitrisg63 2 жыл бұрын
@@junaidhasrat11 no hahaha
@1A26WANCHEUKNAM1A2溫綽楠
@1A26WANCHEUKNAM1A2溫綽楠 4 ай бұрын
0:03 I heard love triangle ...
@josephtraverso2700
@josephtraverso2700 2 жыл бұрын
The sudden chimpmunk voice jump scared me at 8:45
@kent631420
@kent631420 2 жыл бұрын
Dear bprp, I have a question, and I'd appreciate it if you solve it in your next video: Find the max/min value for sinA*sinB*sinC where A, B, and C are three angles in a triangle (A+B+C=pi) Thank you
@simonwillover4175
@simonwillover4175 2 жыл бұрын
Picks complex A, B, C
@bebizambi392
@bebizambi392 2 жыл бұрын
Possible solution?: since A, B and C are angles which form a triangle, you could take C=π-(A+B). Then, sinC= sin(A+B) due to allied angles. Resulting expression is sinA*sinB*sin(A+B). I used maxima and minima for above expression using partial derivatives and got the answer.
@davidp4427
@davidp4427 2 жыл бұрын
Help me out here. A + B + C = 180° so 180° = pi ??? Am I missing something?
@nguyenphungdunganh3941
@nguyenphungdunganh3941 Жыл бұрын
@@davidp4427 radians since we're adults now
@Razhy04
@Razhy04 2 жыл бұрын
This x is actually a solution to log(x)^2 + log(2x)^2 = log(3x)^2 for any log base greater than one. Bases between one and zero satisfy the equasion but they don't make a right triangle as log(x) would be negative. The other solution of the quadratic formula will give the right answer for bases between one and zero.
@jens5573
@jens5573 2 жыл бұрын
I used to hate math, but this guy has somehow an interesting way of explaining things, so I somehow just got hooked lol 😂
@GammaFZ
@GammaFZ 2 жыл бұрын
same, he’s the reason I’m obsessed with math too
@AfaqueAhmed_
@AfaqueAhmed_ 2 жыл бұрын
0:00 Just a man coming out of the blue with a Blue pen and Red pen and a sweet Log problem for us .
@emperorhirodripo5863
@emperorhirodripo5863 11 ай бұрын
This video was soo satisfying, because I always realised what he was about to do, split seconds before he actually did it
@Goldslate73
@Goldslate73 2 жыл бұрын
Please please please please please do another marathon session. Really need it. Calculus. Maybe Laplace, Fourier, Bessel etc. Please?
@e.s.r5809
@e.s.r5809 2 жыл бұрын
It's simply fascinating how the quadratic formula pops up like this. More than once a non-scientist/engineer/mathematician has said to me, "They made us memorise the quadratic formula in school. Why? Where will that ever be relevant?" And the answer is... well, everywhere! If you could pick only one formula to memorise, I think this would be a strong choice!
@Someniatko
@Someniatko 2 жыл бұрын
It's even better to understand how to derive this formula! It's pretty easy!
@cristianrdz7667
@cristianrdz7667 Жыл бұрын
@@Someniatko Yeah, is easy
@otiswebb5783
@otiswebb5783 2 жыл бұрын
Thanks for this vid. I solved something similar inspired by this problem: instead the sides of the triangle were cosh x, cosh(2x) and cosh(3x). Took a lot of algebraic manipulation but the final answer was pretty cool. Maybe another video?
@otiswebb5783
@otiswebb5783 2 жыл бұрын
There are 2 real solutions for x
@barndoor1262
@barndoor1262 2 жыл бұрын
Has anyone noticed the WIZARDRY at the first 3 seconds of the video?!? I haven't yet watched this but the first few seconds scared the bejezsus outta me. Why did they do that? The editor must have had a chuckle.
@DynestiGTI
@DynestiGTI 2 жыл бұрын
I love how you just pop into existence in the beginning
@usdescartes
@usdescartes 2 жыл бұрын
If you solve the generalized problem of using sides ln(nx), ln((n+1)x), and ln((n+2)x), you get: x = (n+2)/(n (n+1)) * e^sqrt(2 * ln((n+2)/n) * ln((n+2)/(n+1)))
@Lucretiel
@Lucretiel 2 жыл бұрын
I took me a while to notice how seamlessly he was switching between red and black and now I’m extremely jealous
@tomctutor
@tomctutor 2 жыл бұрын
Almost the same as BPRP direct analysis, notice that: log(2x) - log(x) = log(2) log(2x) + log(x) = log(2x^2) from which the product gives the difference of squares, [log(2x)]^2 - [log(x)]^2 = log(2)log(2x^2) = log(2)[log(2)+2log(x)] ...eq(1) from the triangle pythagoras, [log(2x)]^2 + [log(x)]^2 = [log(3x)]^2 = [log(x) + log(3)]^2 ...eq(2) eq(2) - eq(1) gives, 2[log(x)]^2 = [log(x) + log(3)]^2 - log(2)[log(2)+2log(x)] a quadratic in log(x), let u = log(x), u^2 - 2[log(3/2)]u - log(6)log(3/2) = 0 solve for u using quadratic formula and your done x = e^(1/2){ 2log(3/2)+- sqrt[4[log(3/2)]^2 +4log(6)log(3/2)] } etc..
@82rah
@82rah Жыл бұрын
At 9:09 you discard the negative sqrt. But this leads to a positive value of x: (3/2) exp( -sqrt( ln(3/2) ln(9) ) ) = .536676; (3/2) exp(+-sqrt( ln(3/2) ln(9) ) ) = 3.854877
@shadowgamer6383
@shadowgamer6383 Жыл бұрын
Even though it's a positive value of x, the side length of the triangle which is ln x will become negative. And we can't have triangle with negative sides
@shreyaschaturvedi8851
@shreyaschaturvedi8851 Жыл бұрын
​@@shadowgamer6383exactly
@manavrana225
@manavrana225 Жыл бұрын
Note: x needs to be greater than 1.5 as sum of two sides need to be greater than third side or the difference between 2 sides needs to be less than the third side.
@eckhardtdom
@eckhardtdom 2 жыл бұрын
0:00 Bro came from imaginary world to real world
@Khusbuhasrat
@Khusbuhasrat 6 ай бұрын
😂😂😂
@crustyoldfart
@crustyoldfart 2 жыл бұрын
Neat problem - more subtle than I at first thought - which was that you would be proving an identity. The solution can be summarized as follows : put a(x) = ln( x ) ; b(x) = ln( 2*x ) ; c(x) = ln( 3*x ) ; if a(x)^2 + b(x)^2 = c(x)^2 -> x = { 3*N/2, 3/(2*N) } where N = e^y ; y = sqrt(-2*ln(2)*ln(3)+2*ln(3)^2) -> N = 2.569917715.. x = { 0.5836762755, 3.854876572 } The open question is : when are mathematicians going to admit that not only are calculators here to stay but also math software ?
@racool911
@racool911 2 жыл бұрын
This was a really good log rule refresher lol
@itzmrinyy7484
@itzmrinyy7484 5 ай бұрын
This is actually one I was able to solve by myself! Very cool, I had to attempt a variety of different methods before thinking to expand ln²2x into (ln2 + lnx)², but once I did that everything was clear.
@reubenmanzo2054
@reubenmanzo2054 Жыл бұрын
After a very exhaustive effort, I got the following solution: x=e^{-ln(2/3) (+/-) sqrt[2ln(3/2)ln3]}
@papasalt8823
@papasalt8823 Жыл бұрын
I believe I messed up somewhere along my working and don't feel like restarting. But from a number theory perspective, couldn't this be solved through Euclid's formula? Often used only with integers, but it applies to the real numbers too. If a^2 + b^2 = c^2. Where: a = m^2-n^2 = lnx b = 2mn = ln2x c = m^2+n^2 = ln3x We can raise everything to the power of e. Then rearrange for x in each equation. And set 3x to be equal to the sum of each equation. (3x = e^a + e^b + e^c). I'm not sure where to go from here though, but I haven't worked through far enough to think about that section, and I'm too lazy to do it since I already mucked up once.
@voidkfox9526
@voidkfox9526 Жыл бұрын
You forgot to distribute the square power in the b^2 of the cuadratic formula. (2ln(2/3)^2 is 4(ln(2/3))^2, not 4ln(2/3) as you say in the video
@computernerd1101
@computernerd1101 2 жыл бұрын
The approximate value of x is 3.85488
@Smosh7i
@Smosh7i 9 ай бұрын
What about x = 0.583676
@computernerd1101
@computernerd1101 9 ай бұрын
@@Smosh7i That does work algebraically, but if x < 1, then ln(x) < 0. Geometrically, it doesn't make sense for the edge of a triangle to have a negative length.
@DokterrDanger
@DokterrDanger 2 жыл бұрын
7:50 Best part: SHWOO!
@rishavbagri4211
@rishavbagri4211 2 жыл бұрын
If u are bored solve this find range of a for all value of y lie in R as y = (ax²+3x-4)/(3x-4x²+9) . . . . Ans- a€(1,7)
@nikhilsoni2403
@nikhilsoni2403 2 жыл бұрын
Wow!! I solved it by a different method (but your method is much simpler and shorter) and got this answer x = 3^[a(a+ sqrroot2)] Where a = sqrroot {[log₃(3/2)]} I thought my answer is wrong ,but after using the calculator, I found that my answer is correct !! 🥳🥳
@chazzbunn7811
@chazzbunn7811 2 жыл бұрын
I got the same answer, I wanted to check it before watching this video. Checking it with algebra by putting the solution back into the original equation proved difficult, much harder than the actual problem in fact.
@tambuwalmathsclass
@tambuwalmathsclass 2 жыл бұрын
Amazing creativity
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
Thanks
@BrijeshsChannel
@BrijeshsChannel 2 жыл бұрын
I've started watching your vids since a month and the way u explain is so cool. i could understand understand calculus at the age of 14 thanks to you! #yay
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Glad to hear 😃
@steventrimble2275
@steventrimble2275 2 жыл бұрын
ln(3x)^2 = ln(2x)^2 + ln(x)^2 Then take the derivative of both sides above and cancel common factors ln(3x) = ln(x) + ln(2x) ln(3x) = ln(2x^2) ln(3x/2x^2) = 0 ln(3/(2x)) = 0 then raise to the power of e 3/(2x) = 1 x = 3/2
@AndreyNsk89
@AndreyNsk89 2 жыл бұрын
Applying derivatives to both sides of the equation does not produce an equivalent equation. For example equation x = x + 1 doesnt have solutions, but if you take derivatives it will become 1 = 1, i.e. it is correct for all x.
@e.s.r5809
@e.s.r5809 2 жыл бұрын
The other issue here (besides the one Andrey pointed out-- I think you meant square root, not derivative) is that you still have to take (ln3 + lnx)^2 = ln3ln3 + 2ln3lnx + lnxlnx. (p + q)^2 =/= p^2 + q^2 sqrt(p^2 + q^2) =/= p + q (p + q)^2 = p^2 + 2pq + q^2 By Pythagoras (substituting lnx = z, ln3 = a, ln2 = b for the sake of everyone's sanity) we expand our brackets and reach: z^2 + 2az + a^2 = 2z^2 + 2bz + b^2 Gathering, simplifying, and substituting back a and b: z^2 + ln(4/9)z + ln(6)ln(2/3) = 0 As you can see, it's a quadratic with two solutions and no common factors to cancel. If you took the exponential of both sides now you'd reach an impasse (or at least something very gross). Remember you have to take exp of the entire expression, and by log rules, those multiplying lns would end up as powers: alog(b) = log(b^a) lnxlnx = ln( x^(lnx) ) 1 = exp{ ln[ x^(ln(x)) × x^ln(4/9) × ... Grim! 😅
@procerpat9223
@procerpat9223 2 жыл бұрын
this is a beautiful problem, your presentation is so impeccable I have watched it several times🙋🏻‍♂️
@SG-lh7up
@SG-lh7up 2 жыл бұрын
I saw your great older video on x^x. Would you consider making a video on plotting x^x (in 3 dimensions) for Real input and complex output? I tried to sketch the full 3d curve, with the x axis being Real and running perpendicular to the complex plane which is used for the output of x^x. So the x axis is the Real input; the y axis is the Real output and the z axis is the imaginary output. So the y and z axes form the complex plane output of the Real x input. So you have a simple exponential-looking 2d curve for positive x, it crosses the real y axis (or has a limit at x=0) at y=1, but the curve then becomes a complex shrinking spiralling "vase" shape for negative x. It's the "smoothness" of the curve as it crosses the y axis and changes from Real 2d to Complex 3d that I can't visualize. Would you consider making a video on this 3d graph and discuss the 3d smoothness of the real-complex transition at x=0 ? i.e. what's the limit of the 3d angle of the complex curve at x=0. AND: on this graph is x^x at x=0, a forbidden indeterminate point or is it equal to 1 ?
@saujanyapoudel8910
@saujanyapoudel8910 Жыл бұрын
In my take, I factored out the 4 from the square root resulting in the product of the square root and 2 then I factored out 2 in the numerator and cancelled it with the 2 in the denominator. When you didn't do the same I expected you would have some twist so I was afraid if I have to rewrite it again.
@tahabouthouri7803
@tahabouthouri7803 Жыл бұрын
Ln9 can be 2ln3 so u simplify 2 and 1/2 and you'll get (ln3)² and you simplify the square root and ull get e^(ln3) and you simplify more and you'll finally get 9/2
@ItsPungpond98
@ItsPungpond98 Жыл бұрын
Bprp's top 10 catchphrases 1. Let's do some math for fun! 2. Oh my god! Looks pretty crazy! 3. Wouldn't it be nice... 4. Don't forget the plus C! 5. Today, we have the integral of... 6. Let's go to the complex world! 7. I don't like to be at the bottom, I like to be on the top. 8. Bring this down down! 9. Don't worry, don't worry. 10. The best friend of the black pen is the red pen.
@desiaasm
@desiaasm 2 жыл бұрын
X is approximately 3,8549 and is a transcendental number!
@shivamchouhan5077
@shivamchouhan5077 2 жыл бұрын
Actually it is 3.854765
@desiaasm
@desiaasm 2 жыл бұрын
@@shivamchouhan5077 Yeah I just rounded it mate
@shivamchouhan5077
@shivamchouhan5077 2 жыл бұрын
@@desiaasm But you added comma (,) instead of dot(.) So your answer was 38549
@nuclear3011
@nuclear3011 2 жыл бұрын
@@shivamchouhan5077 in some countries (like Poland, where I live, for example) people use commas to mark the decimal point and use dots in big numbers e.g. 1.000.000
@shivamchouhan5077
@shivamchouhan5077 2 жыл бұрын
@@nuclear3011 Oh thanks for telling I didn't know that one, btw this can lead to calculations errors in some cases.
@antonyqueen6512
@antonyqueen6512 2 жыл бұрын
Just a tip for quadratic equations: use simplified form of the solutions when coefficient of the linear term is even as it was the case here, i.e,: ax + 2bx + c =0 => x= [-b +|- sqrt(b^2 - ac)]/a 😉 With a=1, even simpler x= - b +|- sqrt(b^2 - c)
@anastasissfyrides2919
@anastasissfyrides2919 2 жыл бұрын
Much more preferable to divide by the common factor than memorizing yet another formula
@kangalio
@kangalio 2 жыл бұрын
i know it as x²+px+q => -p/2±sqrt((p/2)²-q)
@antonyqueen6512
@antonyqueen6512 2 жыл бұрын
@@anastasissfyrides2919 it’s not memorising new formula, it’s simplifying the 2’s
@NoNameAtAll2
@NoNameAtAll2 2 жыл бұрын
- b/2 you forgot to divide b by 2
@antonyqueen6512
@antonyqueen6512 2 жыл бұрын
@@NoNameAtAll2 no I didn’t. That’s the whole point. It is simplified. You don’t have the division by 2. The coefficient of at x is even: 2b, thus -2b/2a= -b/a and sqrt[(2b)^2 - 4ac]/2a= sqrt[b^2 - ac]/a With the coefficient a of x^2 being a=1 you have the simplified solution as indicated in the comment above ☝️
@2012tulio
@2012tulio 2 жыл бұрын
After the second step just replace lnx by u and then continue that would be easier
@mr.shgamingguy
@mr.shgamingguy 2 жыл бұрын
Hypotenuse and legs are on the both side of the triangle.
@BlastinRope
@BlastinRope 2 жыл бұрын
Tbh in calc 2 it wasnt the calc that got me but the occaisonal algebra trick
@kalmes
@kalmes 2 жыл бұрын
That was actually a pretty fun problem.
@Peter_1986
@Peter_1986 2 жыл бұрын
blackpenredpen always comes up with interesting problems.
@samocali
@samocali 2 жыл бұрын
I love these videos
@yqisq6966
@yqisq6966 2 жыл бұрын
Guys this solution works! My love triangle problem is gone, thanks to this.
@runnow2655
@runnow2655 10 ай бұрын
you can simplify a litle further because ln(a)ln(b) = ln(a^b) so ln(3/2)ln(9) = ln((3/2)^9) and then you can find x=3/2 * e^sqrt(ln(19683/512)), looking at that now I can actually see why you didn't but I don't wanna waste the time I spent making this comment
@DrLiangMath
@DrLiangMath 2 жыл бұрын
Wow, wonderful topic and excellent presentation!
@sssilky3317
@sssilky3317 2 жыл бұрын
I knew I was wrong when the answer I got was super long, roughly 3 times longer than the one you got. I checked both of their exact values to make sure it wasn't just a different way of expressing the same value and it wasn't :(
@milmi__9582
@milmi__9582 2 жыл бұрын
Thank you
@aliexpress.official
@aliexpress.official 2 жыл бұрын
Challenge: find x such that: log(ax)^2 + log(bx)^2=log(cx)^2 for arbitrary a,b,c
@europeankid98
@europeankid98 2 жыл бұрын
x = panda
@domc3743
@domc3743 2 жыл бұрын
Let x= e^u for an easier time... Great video though :D
@halid9457
@halid9457 2 жыл бұрын
x ≈ 3.85488
@Fred-yq3fs
@Fred-yq3fs 2 жыл бұрын
This is not too hard. Just apply the Ln formula, solve a quadratic equation, and take the exp. A year 11 should be able to do it. Takes less than a page. Great exercise and great content.
@davidbailis8415
@davidbailis8415 Жыл бұрын
0:00 It’s true, bprp has super speed.
@davidbrisbane7206
@davidbrisbane7206 2 жыл бұрын
I thought he said, "Love triangle" 😂🤣🤣
@latestmoviesforall
@latestmoviesforall 2 жыл бұрын
you should simplify the exponential of the square root.
@Bts.121_4
@Bts.121_4 2 жыл бұрын
You are brilliant👍 ☺ I love your dedication
@reidflemingworldstoughestm1394
@reidflemingworldstoughestm1394 2 жыл бұрын
Pretty cool algebra 2 problem.
@lotis6441
@lotis6441 Жыл бұрын
cant I use the power rule for logs at 2(ln2)(lnx) so that 2lnx^(ln2) => lnx^(2ln2) => lnx^(ln4)?
@manavrana225
@manavrana225 Жыл бұрын
That 2 goes to power of not power of lnx so it wiil be (ln(x²))^(ln2)
@joemcz2564
@joemcz2564 Жыл бұрын
Excellent video, but I will say that I feel like one of the solutions is missing. While I understand why you made the decision to make ln(x) strictly positive, I feel like it's more in the spirit of math to consider the negative solution as well. When I did it I interpreted a negative length to be a normal length but scaled in the opposite direction, and thus drew the triangle upside down. When you draw it out, it's a totally valid right triangle.
@asmmusic6336
@asmmusic6336 2 жыл бұрын
Can you explain some math famous problems like the zeta function or something like that
@alikanan7011
@alikanan7011 2 жыл бұрын
I like this idea
@shreyaschaturvedi8851
@shreyaschaturvedi8851 Жыл бұрын
For everyone,, the answer is x = 3.8548
@mcgyverlouw8881
@mcgyverlouw8881 2 жыл бұрын
Great stuff here. When I saw the thumbnail my first thought was IS THIS POSSIBLE? Any other type of functions we can use for the sides of the right angled triangle? What about e^x?
@oenrn
@oenrn 2 жыл бұрын
He did e^x in another video.
@NightSkyJeff
@NightSkyJeff 2 жыл бұрын
I like crazy pythagorean triple questions. I have one for you... Can you find a pythagorean triple (a, b, c) such that (1/c, 1/b, 1/a) is also a pythagorean triple?
@charlesstimler9276
@charlesstimler9276 2 жыл бұрын
The golden ratio rules!
@whocares12372
@whocares12372 2 жыл бұрын
What is the answer plz
@endeavourer1073
@endeavourer1073 2 жыл бұрын
.
@Dviih
@Dviih 11 ай бұрын
Shouldn’t the final solution be x = (3/2)+e^(sqrt(ln(3/2)*ln9)) ?
@jamespat7975
@jamespat7975 2 жыл бұрын
How to solve this integral question ? Integral [ ( 1/x^2 * (1+x^4)^0.5) ] dx ?
@ciiil8802
@ciiil8802 2 жыл бұрын
Can you do 100 Linear Algebra video
@MrShad
@MrShad 2 жыл бұрын
Your videos are amazing!!
@alibekturashev6251
@alibekturashev6251 2 жыл бұрын
Idea for the math for fun: calculate sin(e) This will be literally 'approximation of sine'
@chenshan4973
@chenshan4973 2 жыл бұрын
what a incredible video..
@duckpilot962
@duckpilot962 Жыл бұрын
whats the answer
@mathadventuress
@mathadventuress 2 жыл бұрын
couldnt you just exponentiate to get rid of the ln? e^ln(x)^2+e^(ln(2x)^2=e^ln(3x)^2??
@gcewing
@gcewing 2 жыл бұрын
Now I'm wondering whether there are any "log-Pythagorean triples", i.e. integers a, b, c such that (ln a)^2 + (ln b)^2 = (ln c)^2. If there are, how would one go about finding them?
@Utesfan100
@Utesfan100 2 жыл бұрын
Bonus points if you use Lambert's W function
@HebertMusingarimi-jw4wj
@HebertMusingarimi-jw4wj Жыл бұрын
Well educative
@UStrom3169
@UStrom3169 2 жыл бұрын
Did he forget the + between the 3/2 and e at the final answer or did I miss sth?
@D7mh76
@D7mh76 2 жыл бұрын
At 7:01 isn’t wrong? Because 2/3 /6 is equals 4. It’s same as 2/3 / 1/6 so we flip second and change the operation into multiplication
@Noctarc
@Noctarc 2 жыл бұрын
0.6666.../6 = 0.1111... not 4
@D7mh76
@D7mh76 2 жыл бұрын
@@Noctarc oh yes i get it now, thank you. I wrote it as 2/3.1/6 but forget that it is 2/3//6-double lines is for longe division line-.
@RchandraMS
@RchandraMS 2 жыл бұрын
ln x is a straight line??!! Side of a triangle??? ... Amazing
@Deejaynerate
@Deejaynerate Жыл бұрын
isn't it fine for ln(x) to be negative since you have to raise it to the e's power anyway, which is always positive? EDIT: nevermind, I checked the other solution and realized the leg of the triangle would be negative.
@jacekskurkiewicz4851
@jacekskurkiewicz4851 2 жыл бұрын
Your t-shirt made me think that the golden ratio will appear in the answer...
@bjarnivalur6330
@bjarnivalur6330 2 жыл бұрын
I was really hoping for it to work for all X
@Kcite
@Kcite 2 жыл бұрын
dang the intro is smooth
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thanks!
@Dalton1294
@Dalton1294 2 жыл бұрын
The solution is approximately 3.85488
@ridwanwase7444
@ridwanwase7444 2 жыл бұрын
Help me to find integral of x^2/x^4+3 im in distress
@tororo112
@tororo112 2 жыл бұрын
The other solution you have excluded is also positive: x≈0.58368 x≈3.8549 Please correct
@Phoenix-nh9kt
@Phoenix-nh9kt 2 жыл бұрын
X is positive but the log would be negative. So we cannot have a triangle with negative side length. Thats why the only option correct is the second one
@tororo112
@tororo112 2 жыл бұрын
Ah right. Somehow I didn't realise this. Thanks a lot for the correction!
@Uni-Coder
@Uni-Coder 2 жыл бұрын
What about exponential triangle problem, exp(x), exp(2x), exp(3x) ?
@davidhowe6905
@davidhowe6905 2 жыл бұрын
I tried this just now; first of all, thought it was impossible - then noticed my basic algebra error! I got x = 0.2406 (4 decimal places). Similar method; use Pythagoras then simplify to get quadratic in exp(2x) giving exp(2x) = (1 + sqrt(5))/2 (I think this is correct)
@carrdesch9534
@carrdesch9534 2 жыл бұрын
Me, a physicist: "Let ln(2) = -alpha, ln(3) = beta, ln(x) = y. Now just substitute the sh** out of this and voila, we have a general formula that can be fed to a computer". I hate dealing with numbers directly, it's such a hassle and the risk of error is much higher than just doing algebra.
@alienbsg
@alienbsg 2 жыл бұрын
I solved it by splitting ln(2x) into ln2+lnx and ln3x=ln3+lnx Then by pythagoras theorem we get (ln2+lnx)²+(lnx)²=(ln3+lnx)² (ln2)²+2(ln2(lnx)+2(lnx)²=(ln3)²+2(ln3)(lnx)+(lnx)² (ln2)²-lnsolved it by splitting ln(2x) into ln2+lnx and ln3x=ln3+lnx Then by pythagoras theorem we get (ln2+lnx)²+(lnx)²=(ln3+lnx)² (ln2)²+2(ln2(lnx)+2(lnx)²=(ln3)²+2(ln3)(lnx)+(lnx)² (2ln2lnx)-(2ln3lnx)+(lnx)²=(ln3)²-(ln2)² ln(x)(2ln2-2ln3)+lnx²=ln(3^ln(3)÷2^ln(2)) (lnx)²+ln(4/9)lnx-ln(3^ln3÷2^ln2)=0 Sub Y=lnx Y²+ln4/9Y-ln(3^ln3/2^ln2)=0 One solution is Y≈1.3493 Since Y=lnx X=e^Y=e^1.3493 X≈3.855 Other solution Y≈-0.5384 X≈e^-0.5384≈0.584
@captainkarma7374
@captainkarma7374 2 жыл бұрын
Please dont tell me you typed all that 💀
@alienbsg
@alienbsg 2 жыл бұрын
@@captainkarma7374 was tedious but that's how proofs are lmao
@asparkdeity8717
@asparkdeity8717 2 жыл бұрын
X=0.58 not a solution as then ln(X) < 0 for one of the triangle sides
@NoNameAtAll2
@NoNameAtAll2 2 жыл бұрын
@@asparkdeity8717 why is that a problem? if x
@asparkdeity8717
@asparkdeity8717 2 жыл бұрын
@@NoNameAtAll2 this problem represents side lengths of triangles, all of which must be positive, yet lnX < 0 so isn’t a solution; u just need one extra sentence saying this solution should be disregarded
@abuomariaibnrabeh3934
@abuomariaibnrabeh3934 Жыл бұрын
3.8
baby calculus vs adult calculus
12:28
blackpenredpen
Рет қаралды 170 М.
exact value of sin(3 degrees)
33:16
blackpenredpen
Рет қаралды 424 М.
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 161 МЛН
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 86 МЛН
Мама у нас строгая
00:20
VAVAN
Рет қаралды 10 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 56 МЛН
7 factorials you probably didn't know
12:59
blackpenredpen
Рет қаралды 403 М.
The Most Useful Curve in Mathematics [Logarithms]
23:43
Welch Labs
Рет қаралды 350 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 623 М.
the sine triangle problem
11:18
blackpenredpen
Рет қаралды 89 М.
My all-in-one calculus problem
11:54
blackpenredpen
Рет қаралды 114 М.
A Cambridge Integral Experience
29:03
blackpenredpen
Рет қаралды 222 М.
How to solve exponential equations (10 examples from easy to hard!)
33:03
on the product of all natural numbers...
21:07
Michael Penn
Рет қаралды 34 М.
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 591 М.
An Exact Formula for the Primes: Willans' Formula
14:47
Eric Rowland
Рет қаралды 1,4 МЛН
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 161 МЛН