The complex relationship between regular and hyperbolic trig functions

  Рет қаралды 111,789

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 193
@msolec2000
@msolec2000 6 жыл бұрын
9:27 isn't it? or isin(it)? ;)
@naremarcusmogakala8121
@naremarcusmogakala8121 6 жыл бұрын
damn
@theforgemaster1688
@theforgemaster1688 6 жыл бұрын
Oh my god that was pure gold.
@Prxwler
@Prxwler 5 жыл бұрын
Best comment
@Sean-of9rs
@Sean-of9rs 3 жыл бұрын
you should be the winner
@kennethx7801
@kennethx7801 3 жыл бұрын
Loool
@barthennin6088
@barthennin6088 3 жыл бұрын
WoW! I haven't been this blown away since when I was shown Euler's identity!
@fernandogaray1681
@fernandogaray1681 6 жыл бұрын
I love this kind of videos. I love all the proof videos! Thanks!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Fernando Garay thank you
@andresxj1
@andresxj1 6 жыл бұрын
I've been a Brilliant member for a year and a half now, and it all began with your special offer. I'm delighted with the app! I've learnt a lot and I've enjoyed it so much! So thank you for introducing me to Brilliant and thank Brilliant for sponsoring you!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Thank you Andy! Glad to hear that you like it!!!
@nomadr1349
@nomadr1349 3 жыл бұрын
this is by far the best take on hyperbolic functions I found on youtube so far. And I looked far and wide too!
@plaustrarius
@plaustrarius 6 жыл бұрын
looking at the series expansions for exp(x) cosh(x) and sinh(x) is what really drove this point home for me.
@retired5548
@retired5548 6 жыл бұрын
complex relationship well played, good sir, well played
@idolgin776
@idolgin776 Жыл бұрын
I've been fascinated by these patterns for a while, and yours is an excellent explanation. Thanks!
@axelreispereiravaz1699
@axelreispereiravaz1699 6 жыл бұрын
I always asked myself why the hyperbolic trigs functions and the complex trigs functions looked so similar. Even my teacher didn't showed this relation. Now i have my answer ! Thanks BPRP !
@angeldude101
@angeldude101 3 жыл бұрын
I actually discovered this when I noticed that cosh and sinh had a structure similar to the inner and outer products of geometric algebra, which are defined as the symetric and antisymetric components of the full product. But the inner and outer products are usually defined with sin and cos... along with i. This is what led me to realize the relation between them and the real and imaginary / even and odd parts of the exponential. The only reason one relation is x^2 + y^2 = 1 and the other is x^2 - y^2 = 1 is because the imaginary factor of y flips the sign when squared. It felt so awesome to find that on my own. Now I kind of want to make a visualization of the complex exponential's even and odd parts to try and get the hyperbolic and spherical trig functions to appear on different axes of the same graph.
@theomegaspec7923
@theomegaspec7923 Жыл бұрын
Very interesting. I was wondering about the relation between the hyperbolic trig functions and the complex definitions of the trig functions after seeing one of your videos, and you explained these concepts so clearly.
@aidan8858
@aidan8858 6 жыл бұрын
cos(it) + cosh(t) = cosh(it)
@cringy7-year-old5
@cringy7-year-old5 Жыл бұрын
that implies cosh(t) = cos(t)/2
@penguincute3564
@penguincute3564 Жыл бұрын
So 2cosh(t) = cosh(it)?
@penguincute3564
@penguincute3564 Жыл бұрын
@@cringy7-year-old5that is seriously wrong…
@Questiala124
@Questiala124 Жыл бұрын
Cos(it)=0?
@kennethx7801
@kennethx7801 3 жыл бұрын
An easy way to remember this is that, e^(ix)=cosx+isinx on one hand, on the other, e^ix=cosh(ix)+sinh(ix). Match the even part of one side with the even part of the other side, and do the same with the odd part. You get that cosh(ix)=cosx and sinh(ix)=isinx. Now evaluate these functions at x=it and you get the rest ;)
@Riiisuu
@Riiisuu 6 жыл бұрын
Give this problem a try and when you’re ready, continue the video. Did *You* figure it out?
@markuswilliams4475
@markuswilliams4475 6 жыл бұрын
Reece 5..4..3..2..1
@markuswilliams4475
@markuswilliams4475 6 жыл бұрын
Math meanies 😡
@davidadegboye773
@davidadegboye773 5 жыл бұрын
Hey guys it's presh talwaker making sure you mind your decisions
@rafaellisboa8493
@rafaellisboa8493 6 жыл бұрын
It's like you can read my mind comrade! second time I was studying some maths and you made a vid exactly about what I was studying, great vid!
@kostantinos2297
@kostantinos2297 6 жыл бұрын
Is there a geometrical representation of tanh(t), coth(t) etc, just like cosh(t) and sinh(t) are the x and y values of the points of the hyperbola?
@cuzeverynameistaken1283
@cuzeverynameistaken1283 6 жыл бұрын
Putting this comment just so if someone else finds it. Right now its late where Im from so I'll try and see if there is one in the morning
@filyb
@filyb 5 жыл бұрын
@@cuzeverynameistaken1283 did you find one?
@joea-497kviews2
@joea-497kviews2 4 жыл бұрын
@@filyb he’s still working on it
@filyb
@filyb 4 жыл бұрын
@@joea-497kviews2 lmao
@paulniziolek9200
@paulniziolek9200 3 жыл бұрын
@@joea-497kviews2 eta perhaps?
@ramkrishnapandey7737
@ramkrishnapandey7737 4 жыл бұрын
You solve mathematics like you are hanging out with Ur friends😜😜 And Ur excitement after solving is just awesome. Just because of teacher like u I'm happy of being a mathematic student. Thank you🙏
@zralok
@zralok 6 жыл бұрын
Did you saw the joke isn't it? So the similarity of "i sin(it)" to isn't it.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
der Ultrahero Nice catch!!!
@mike4ty4
@mike4ty4 6 жыл бұрын
Or "I sign it"?
@IrateUngulate
@IrateUngulate 6 жыл бұрын
I just discovered your channel. Your videos are brilliant! Good thing they're your sponsor :D
@_DD_15
@_DD_15 6 жыл бұрын
Omg.. The biggest problem of my life.. Finally solved 😱😱😱😱😱impressed
@blackpenredpen
@blackpenredpen 6 жыл бұрын
DD Yup!!!! : )
@_DD_15
@_DD_15 6 жыл бұрын
@@blackpenredpen I have plenty of calculus books and have never seen that one around, weird :)
@6root91
@6root91 3 жыл бұрын
I was searching for these formulae (didn't need the proofs, but they were cool too) for about an hour until I found it here and was able to answer my question.
@hemanthkotagiri8865
@hemanthkotagiri8865 6 жыл бұрын
Your videos are pretty amazing man. Keep going. 👌
@ffggddss
@ffggddss 6 жыл бұрын
Before 1 min: There's a 3rd way to interpret the angle - the arc length subtended on a unit circle, whose equation you've written: x² + y² = 1. This may or may not work for the unit rectangular hyperbola; I'm checking into that. It does have the right behavior near 0, and it does go to ∞, but those are no guarantee... Fred
@rockapedra1130
@rockapedra1130 2 жыл бұрын
Excellent video! This is super interesting! Thanks for making these videos!
@koltonjones866
@koltonjones866 6 жыл бұрын
Your videos should be required viewing for most math classes. Do you do anything for dicrette algebra?
@irrelevantgaymer6195
@irrelevantgaymer6195 5 жыл бұрын
What I think is cool is if you were to somehow create a 4D graph and declare your x, y, z, and t axis, and call the z axis the imaginary input and call the t axis the imaginary output, the function x^2+y^2=1 on the t axis looks like x^2-y^2=1 and vice versa. So I kind of think of the hyperbolic function as a complex version of the circle function and vice versa
@leeluu998
@leeluu998 5 жыл бұрын
I hope you're gonna be a math teacher because yours videos are so clear and precises
@m_riatik
@m_riatik 6 жыл бұрын
please continue this series!
@luuksemmekrot4509
@luuksemmekrot4509 23 күн бұрын
Cool again! Love your content!
@carlosraventosprieto2065
@carlosraventosprieto2065 Жыл бұрын
Wow!! Thank you for the video!
@nishasharma-gk5bo
@nishasharma-gk5bo 3 жыл бұрын
Look at this cute face he is blushing while playing with Maths 😍 ,maths must be his love.
@borg972
@borg972 6 жыл бұрын
Great one, thanks! If you could do more parameterization videos it would be great since finding them is always so confusing.. also integrations along a curve with parameterization
@tm89681
@tm89681 2 жыл бұрын
Nice lecture👍
@RichardCorongiu
@RichardCorongiu 8 ай бұрын
Throw in a bit of an explanation of Eulers formula in terms of the Taylor series of e^x polynomial... love your passion...😊
@Anonymous-rr5cx
@Anonymous-rr5cx 5 жыл бұрын
Sir at 6:50 u said imaginary looking Theta = it So t is also imaginary so that they can be real Sin theta = real function Sin h x= imaginary function ?????? Sir please please clear this doubt Thank you
@spelunkerd
@spelunkerd 6 жыл бұрын
I'm headed back to your channel to find the link to "even" and "odd" parts of e^t, described at 15:18. Not sure where to look....
@spelunkerd
@spelunkerd 6 жыл бұрын
Ah, found it here. kzbin.info/www/bejne/pX29oHp7mK9lj6c
@blackpenredpen
@blackpenredpen 6 жыл бұрын
It's here: kzbin.info/www/bejne/pX29oHp7mK9lj6c
@ian-ht1nf
@ian-ht1nf 6 жыл бұрын
9: 26 "isin(it)"?
@crappypoopycrap9800
@crappypoopycrap9800 6 жыл бұрын
nice one :)
@alejrandom6592
@alejrandom6592 7 ай бұрын
Easy way: exp(it)=cos(t)+i*sin(t) But also exp(it)=cosh(it)+sinh(it) Pairing up the odd part with odd part, and even with even we get: cosh(it) = cos(t) sinh(it) = i*sin(t)
@Lucky10279
@Lucky10279 2 жыл бұрын
0:57 Shouldn't the area = t? The area 0f a unit circle is A = 2π and the area of a sector of a circle is A*(corresponding angle of sector/2π), assuming the angle is in radians. Hence, the area in the diagram should be 2π•t/2π = t.
@ma7-s8j
@ma7-s8j 2 жыл бұрын
Area of circle with r = 1: pi * r ^ 2 = pi. Not 2pi.
@thomasolson7447
@thomasolson7447 Жыл бұрын
I noticed that to. But I went the arctan route. cos(i*arctan(3/4))-i*sin(i*arctan(3/4))=1.9031323020709 cos(arctan(i*(3/4)))+sin(arctan(i*(3/4))) =sqrt(7)(4/7+3/7i) for tan= i*3/4 Works just fine this way. You can do geometry with it. It's just pythagorous' theorem with an 'i' in it. [x/sqrt(x^2+y^2), y/sqrt(x^2+y^2)]
@tunneloflight
@tunneloflight 3 жыл бұрын
Plot them! The hyperbolic sin and cos “jump” off the tops and bottoms of the sin and cos at right angles in the y-i plane. Likewise, when sinh and cosh are real, sin and cos are at right angles in the y-i plane. Etc…. It is beautiful. Next extend to tan and tanh, sec and sech …. Then extend to Bessel and J functions!
@holyshit922
@holyshit922 6 жыл бұрын
Rational paramerization of hyperbola is based on observation (1-t^2)^2+(2t)^2=(1+t^2)^2 (2t)^2=(1+t^2)^2-(1-t^2)^2 1=\left(\frac{1+t^2}{2t} ight)^{2} -\left(\frac{1-t^2}{2t} ight)^{2}
@nicholaslau3194
@nicholaslau3194 6 жыл бұрын
Damn clickbait title! I wish professors can use clickbait to make lectures more interesting
@thalesbastos3915
@thalesbastos3915 6 жыл бұрын
Thank you sooooo much!!!
@billazz9176
@billazz9176 4 жыл бұрын
RIGHT HERE, RIGHT HERE, RIGHT HERE
@edgardojaviercanu4740
@edgardojaviercanu4740 3 жыл бұрын
Beautiful!
@leoarzeno
@leoarzeno 4 жыл бұрын
great video
@siddharthsengar8859
@siddharthsengar8859 6 жыл бұрын
after all i've been through in last year , "Imaginary" is a inappropriate title.
@artey6671
@artey6671 6 жыл бұрын
You don't even need Euler's formula to show that cos(it) = cosh(t). You can also show that their power series are the same.
@koenth2359
@koenth2359 6 жыл бұрын
Yeah, Tibees just did that Bob Ross style!
@artey6671
@artey6671 6 жыл бұрын
You mean her newest video? I don't see any cosh in there.
@koenth2359
@koenth2359 6 жыл бұрын
@@artey6671 yeah guess you are right. May have misremembered.
@gwalla
@gwalla Жыл бұрын
Are there other conic section analogues of the trigonometric functions? Parabolic sine? Elliptical cosine?
@debaprasadparui4757
@debaprasadparui4757 5 жыл бұрын
Sir you are awesome....!!!!
6 жыл бұрын
Cool!!!! So one can get the derivative of sinh and cosh using chain+product rule from the equal sin/cos statement, never thought on that :-O I always did that from the definition of sinh/cosh only ("e-stuff").
@TheNerd484
@TheNerd484 6 жыл бұрын
We just went over sinh and cosh in my calc class today. What are the chances? This is a much more complete explination than we got.
@abdonecbishop
@abdonecbishop Жыл бұрын
makes me want to say.....this is wonderful short video.... beautiful work...so ...so ..excellent...but i think you need to add a quick physic conclusion to your video.........this certainly is one of the slickest short video in circulation....why?....because you connects non-Euclidean equilateral triangle's surface area(excess/deficit) change to a Euclidean triangle's total energy change and the triangle's inertial mass change dependent on (a function off) the average of the total number of summed ''-' , '+' and '0' Gaussian curved triangle edges counted ......
@rishinandha_vanchi
@rishinandha_vanchi 5 жыл бұрын
ellipse eqn in complex extended x-plane-y-axis will be a hyperbola in the Im-x-side. This so parametric forms cos and cosh are complex and real counterparts
@rishinandha_vanchi
@rishinandha_vanchi 5 жыл бұрын
Oh You mentioned it? Just now say it.
@mehwishbhatti6207
@mehwishbhatti6207 2 жыл бұрын
Can you please make a video relating tan and tanh
@Thoalfeqargamer
@Thoalfeqargamer 4 жыл бұрын
i love you man 💕💕💕💕
@armchairtin-kicker503
@armchairtin-kicker503 Жыл бұрын
Then there is Osborn's Rule, a very useful relationship between trigonometric and hyperbolic functions and identities.
@h4c_18
@h4c_18 6 жыл бұрын
What about x=sec(t) and y=tan(t) for 0
@ugursoydan8187
@ugursoydan8187 4 жыл бұрын
thanks
@alaba5085
@alaba5085 6 жыл бұрын
¡¡Lo máximo!!
@bernardfinucane2061
@bernardfinucane2061 6 жыл бұрын
Very cool
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!
@RichardCorongiu
@RichardCorongiu 8 ай бұрын
How's your stock of whiteboard pens ? 😊
@canaDavid1
@canaDavid1 4 жыл бұрын
Wait... Are the trig functions C -> N? Or can some input a+bi give imaginary output?
@justacutepotato2945
@justacutepotato2945 4 жыл бұрын
they're C->C. Also, you put C->N, pretty sure you meant C->R or C-> [-1,1].
@canaDavid1
@canaDavid1 4 жыл бұрын
@@justacutepotato2945 yeah, you're right. And I meant C->R.
@decay2__
@decay2__ 6 жыл бұрын
You probably don't know this but you made a pun at 5:49
@helloitsme7553
@helloitsme7553 6 жыл бұрын
Tbh I've always felt like this is true because I can say integral of 1/1-x^2 dx = integral of 1/1+(ix)^2 and then use u-sub. But at the same time, the integral is tanh(x)
@davidmorochnick498
@davidmorochnick498 5 жыл бұрын
QUESTION: With -i out in front of sin(it), [-isin(it)], doesn't the proof fail?
@a.a.sunasara9202
@a.a.sunasara9202 6 жыл бұрын
Bruh😍awesome.... Love ot
@nicolasinostrozamoreno4248
@nicolasinostrozamoreno4248 6 жыл бұрын
Why you don't have spanish subtitles ?? Its so interesting
@Koisheep
@Koisheep 6 жыл бұрын
Well to some extent you can also use x(t)=sqrt(1-t) and y(t)=sqrt(t) I mean (?)
@bullinmd
@bullinmd 4 жыл бұрын
Ever heard of gd(x), the Gudermannian function?
@comingshoon2717
@comingshoon2717 4 жыл бұрын
Tengo sueño ... pero igual veo estos videos aunque hayan sido contenidos que vi hace muchos años!....
@drshamajain4149
@drshamajain4149 4 жыл бұрын
What we do with the part of the hyperbola on the left side
@KwongBaby
@KwongBaby 6 жыл бұрын
What's the usage of sinh and cosh?
@afafsalem739
@afafsalem739 6 жыл бұрын
Yes it's very cool
@khaled014z
@khaled014z 6 жыл бұрын
hey bprp, there was an integral video involving cos's and sin's I think and you solved it with a creative way of adding 2 solutions of 2 integrals together and I can't find that video, any ideas? thank you :D
@azmath2059
@azmath2059 6 жыл бұрын
great video. but try starting from first principles and proving that for a hyperbola x=cosht and y=sinht and see how long that takes you!!
@shoobadoo123
@shoobadoo123 3 жыл бұрын
What about cosh(it)
@snejpu2508
@snejpu2508 6 жыл бұрын
What do you need hyperbolic functions for in math? Of course, except defining them and solving equations with them?
@nicolastroncoso1791
@nicolastroncoso1791 6 жыл бұрын
to simplify the work or notation of multiple real life problems, instead of putting an enormous amount of digits you simply use hyperbolic functions, same as trigonometry in general
@geoffstrickler
@geoffstrickler 3 жыл бұрын
3^2 - 2^2 = 1 too. 😎
@musicandmathematics7897
@musicandmathematics7897 4 жыл бұрын
We have theta be real and t be real also. So, how can we put theta = it ??
@justacutepotato2945
@justacutepotato2945 4 жыл бұрын
We're extending the theta and t to complex world
@kbotter3955
@kbotter3955 6 жыл бұрын
What does E equal?
@lewisbulled6764
@lewisbulled6764 6 жыл бұрын
2.71828182... it is transcendental.
@markorezic3131
@markorezic3131 6 жыл бұрын
Approximately 2.7182818 Its a irrational and transcendental number like pi, its related to the exponential function
@andi_tafel
@andi_tafel 6 жыл бұрын
(1+1/n)^n if n goes to infinity
@dranxelaa6770
@dranxelaa6770 6 жыл бұрын
e=3=pi *isn't* *it* *?*
@omarifady
@omarifady 6 жыл бұрын
Sum from 0 to infinity of 1/n! 😃
@mathteacher2651
@mathteacher2651 5 жыл бұрын
Another great video - kid!
@rafaellisboa8493
@rafaellisboa8493 6 жыл бұрын
Could you make a vid about Lobachevsky space pleaseee? don't make me beg
@zralok
@zralok 6 жыл бұрын
That's in my textbook xD
@jimallysonnevado3973
@jimallysonnevado3973 6 жыл бұрын
Still unsatisfied how can you say that this equation can make the area t/2 and is there a way to come up with this formula using calculus like what you can do with sin and cosine by knowing the derivatives first then using taylor then coming up with a formula like eulers identity
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Jim Allyson Nevado as I said in the video. I will do a proof for that. So stay tuned!
@jimallysonnevado3973
@jimallysonnevado3973 6 жыл бұрын
blackpenredpen waiting for that
@jimallysonnevado3973
@jimallysonnevado3973 6 жыл бұрын
blackpenredpen oops i apologize for not listening carefully
@menjolno
@menjolno 5 жыл бұрын
Notice how close they are to co shit.
@AmogUwUs
@AmogUwUs 4 жыл бұрын
*slaps theta* TAG YOU'RE (it)
@rot6015
@rot6015 6 жыл бұрын
OMG!!!! @&@&&@&@&@; THIS IS SO EXTREME LIKE THE TITLE!!!
@jinnjinn5567
@jinnjinn5567 2 жыл бұрын
sinh(x) = -i sin(ix) cosh(x) = cos(ix) tanh(x) = -i tan(ix) sinh(ix) = i sin(x) cosh(ix) = cos(x) tanh(ix) = i tan(x)
@Stanish4Ever
@Stanish4Ever 6 жыл бұрын
Can u Integrate xtan(x)? 😛 Help me if u can. I really love ur Videos. I learn a lot from them. Thanks
@_DD_15
@_DD_15 6 жыл бұрын
Btw, is this a newly discovered relation?
@tupperwallace9048
@tupperwallace9048 6 жыл бұрын
Yes, considering that the history of mathematics goes back millennia. Wikipedia dates them to the 1760s.
@aswinibanerjee6261
@aswinibanerjee6261 6 жыл бұрын
Why you don't advatise for patrion
@quahntasy
@quahntasy 6 жыл бұрын
ALGEBRAIC EXPRESSIONS HATE HIM.
@MuthuKumar-mk1320
@MuthuKumar-mk1320 6 жыл бұрын
lim x → 0 sin2x^(tan2x) ²
@duggydo
@duggydo 6 жыл бұрын
cos(it)=cosh(t) is interesting. cosh(it)=? is a more interesting question though.
@MarioFanGamer659
@MarioFanGamer659 6 жыл бұрын
cosh(it) = cos(t) Like, it's simply inserting i*t into x for cosh(x) and get cos(t) as the result just like as if you have inserted i*t for cos(x) and get cosh(t) as a result.
@kingbeauregard
@kingbeauregard 6 жыл бұрын
Is it possible to actually understand complex numbers, or are they simply an abstract tool in the world of mathematics? Like, I can understand integers as "counting things", real numbers as "measuring things", and sines and cosines as "the vertical and horizontal weights of a diagonal line". But imaginary numbers and complex numbers ... ? I don't see them in the real world anywhere. Maybe I'm not looking hard enough?
@camilincamilero
@camilincamilero 6 жыл бұрын
I think of them as vectors that rotate at a certain frequency, or phasors. They are used all the time in electrical engineerig, in the field of power systems.
@kingbeauregard
@kingbeauregard 6 жыл бұрын
I don't doubt the utility of complex numbers in real-world calculations, but they seem to be a way to arrive at a real-world result rather than a representation of the real-world result: for example, if two electrical signals are out of phase with one another, the result is the superposition of sine curves, with no visible evidence of any imaginary components. So I'm wondering if they appear visibly in the real world anywhere. If someone asked where I can see Fibonacci Numbers I could point to a sunflower. Is there anywhere I could see complex numbers?
@Harkmagic
@Harkmagic 6 жыл бұрын
Complex numbers are as real as the rotation you are doing in your problem. For most engineering and physics applications those rotations are very real. Hell, 3d rotation can't even be mathematically described properly without quaternions, which are basically more complex imaginary numbers.
@kingbeauregard
@kingbeauregard 6 жыл бұрын
Show me an imaginary number. Don't just tell me that they factor into the arithmetic of sine waves; show me an imaginary number in the real world. I'm not sure it can be done, but if it can, I'd like to see it.
@Harkmagic
@Harkmagic 6 жыл бұрын
Showing an imaginary number is no more possible than showing a real number. Numbers are not real physical things that you can point to or reach out and touch, even our real numbers are just abstractions used to represent reality. So if I tell you to stand up and turn and face to your left and tell you that is the number 'i' it is just as valid as saying telling you to count the number of fingers on your hand and telling you that it is the number '5'.
@urluberlu2757
@urluberlu2757 4 жыл бұрын
you have 99% of like and 1% of dislike... Not too bad... I like ;-)
@draztrazh6497
@draztrazh6497 5 жыл бұрын
The return of black shirt red shirt.
@AlgyCuber
@AlgyCuber 6 жыл бұрын
cosh(it) --> ohsh(it) oh no
Hyperbolic trig function, the input is twice of the area
13:47
blackpenredpen
Рет қаралды 63 М.
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
Why hyperbolic functions are actually really nice
16:03
Dr. Trefor Bazett
Рет қаралды 143 М.
the complex derivative is strange...
26:37
Michael Penn
Рет қаралды 52 М.
A Brilliant Limit
16:58
blackpenredpen
Рет қаралды 1,4 МЛН
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 134 М.
Newton's method and Omega Constant
21:58
blackpenredpen
Рет қаралды 256 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 627 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27