I wish all instructors were as excited as you when they teach. More people would learn faster when you show such enthusiasm. Plus, it's infectious.
@masoncamera2732 жыл бұрын
It's amazing that the only difference between the equations for a circle and a hyperbola is a minus sign but they produce very different functions
@carmangreenway2 жыл бұрын
The similarity is due to them both being conic sections :)
@createyourownfuture54102 жыл бұрын
@@carmangreenway I have a question: Why do we study conic sections?
@carmangreenway2 жыл бұрын
@@createyourownfuture5410 they're very useful for orbits in particular. Zach Star did a great video on that and other uses :)
@createyourownfuture54102 жыл бұрын
@@carmangreenway oh, thanks
@facundo_50902 жыл бұрын
@@createyourownfuture5410 i think they're useful for 3d things in general (quadric surfaces and that kind of things)
@harrisidh6 жыл бұрын
In this video blackpenredpen has become blackpenredpenbluepengreenpen
@KnakuanaRka6 жыл бұрын
Harris Idham Onepentwopenredpenbluepen
@ineshmukherjee83385 жыл бұрын
Don’t mind the purple pen
@non-inertialobserver9466 жыл бұрын
He got very excited at the end of the video lmao
@tofu86766 жыл бұрын
*cancelling intensifies*
@WitchidWitchid4 жыл бұрын
When you work on a long maths problem and you and up with a good result you feel highly elated. There is an endorphin rush. You are literally getting high via your brain's natural chemicals.
@ashtonsmith17304 жыл бұрын
@@WitchidWitchid now i cant view math the same thanks
@johnrodonis41862 жыл бұрын
More astounding to me is that "t" = ln(cosh(t)+sinh(t)) where cosh(t) = x and sinh(t) = y on the curve: x^2-y^2=1 Hence, take ln(x+y) of any (x,y) on that curve and you have the hyperbolic angle associated with that point. Hyperbolae are SO MUCH MORE INTERESTING than circles. :)
@suomeaboo Жыл бұрын
that's so cool, indeed the hyperbola is really interesting
@ronanh21843 жыл бұрын
He gets so excited at the end it’s the sweetest thing I’ve ever seen🥺
@marioguitarra14 жыл бұрын
The most interesting thing is that: THIS IS THE SAME FORMULA OF THE AREA OF A SLICE OF A UNIT CIRCLE! (Just change t -> theta)
@johnholme7835 жыл бұрын
Thanks for taking the time to produce this video, I didn’t think the proof would be so simple. It’s long-winded but quite straight forward.
@stevewhitt9109 Жыл бұрын
you are the very most accurate teacher
@timotejmlakar45026 жыл бұрын
Honestly this is exactly why I adore maths so much. Great video, great solution. Keep it up!
@zack_1203 жыл бұрын
Excellent! You tend to do the work that other channels don't or are unable to do. Keep up the good work 👍👍👍
@Mal-Function44 жыл бұрын
I was just as excited as him in the end. this was really cool
@hallowkrubics87186 жыл бұрын
Another great video! Keep it up
@blackpenredpen6 жыл бұрын
Master JH thanks!!!!
@benjaminparra46722 жыл бұрын
So cool, great video, great result, thanks for the video!!!
@pranayvenkatesh88156 жыл бұрын
Awesome video, blackpen!
@blackpenredpen6 жыл бұрын
Pranay Venkatesh thanks!!
@Gold1618036 жыл бұрын
The isn't its are back! I'm so happy!!
@orodriguez9472 жыл бұрын
He's the man!
@CaptHowdy1155 Жыл бұрын
This was so cool! I love proofs from calculations. Formal logic and proofs are my Achilles heel.
@eriche84694 жыл бұрын
He is truely passionate about math
@avi_mukesh6 жыл бұрын
Just what I needed. Thank you!
@JohnSmith-iu3fc5 жыл бұрын
Thank you! I appreciate your hard job!!!
@prakharshankar86366 жыл бұрын
New subscriber , dude ur videos are awesome and unique keep doing MATHS love from INDIA.👌👌
@edgardojaviercanu47403 жыл бұрын
well done, teacher!
@asev19693 жыл бұрын
just tea over two and two beneath tea
@jammy125 жыл бұрын
Cool, great explanation thanks
@foffif20116 жыл бұрын
He was so excited at the end! 😂😁
@Rekko826 жыл бұрын
Yeah, because this entire video was cool although I don't understand what he is talking about. I gave it a like because it is wonderful to see shiny happy people all around.
@abada00zhanghongbing6 жыл бұрын
if we can definite the t with the length of arc? instead of t/2 with the area. like a circle
@tomatrix75254 жыл бұрын
Soo cool! I saw Dr payems video where he derived tye definition of sinh and cosh, but he started with the assumption of the outer area being t/2 (he used alpha instead of t...Doesn’t matter) and I was curious as to why. This video nicely answers that! I am just not able to take things for granted in math, I must see why!!!
@ny6u4 жыл бұрын
Very cool 👍🏻
@ltuxasx31176 жыл бұрын
Can you do video on new riemanns hypothesis ,,proof"?
@kostantinos22976 жыл бұрын
It hasn't been published yet, it is currently under peer review.
@kostantinos22976 жыл бұрын
Actually, he has published a short and simple "proof", but he relies on the so-called Todd function, which is a function that he has formulated and has not published the proof of yet, except for his paper that is under peer review. So, we wait.
@ltuxasx31176 жыл бұрын
Oh ok, thank you
@michel_dutch6 жыл бұрын
There will be no need for that. It's quite a complicated situation... see meta.mathoverflow.net/questions/3894/is-there-a-way-to-discuss-the-correctness-of-the-proof-of-the-rh-by-atiyah-in-mo for some background.
@kostantinos22976 жыл бұрын
@@michel_dutch He did claim that he had come up with a simple proof, which sounds kind of suspicious. But I guess that time will tell, since his work needs to be sufficiently examined first.
@douglasespindola51852 жыл бұрын
Don't matter how good you're on something, there will always be an asian better than you, specially in maths! Great explanation! Thank you so much and greetings from Brazil!
@ericklimones6 жыл бұрын
11:28 you were really excited to conclude the viedo
@gordonchan48016 жыл бұрын
"oh, look at that!"
@vuyyurisatyasrinivasarao31404 жыл бұрын
Excellent
@vivekchowdhury88796 жыл бұрын
Great !!! Love it
@guitarttimman5 жыл бұрын
Very good!
@afafsalem7396 жыл бұрын
At the end the area is equal to t/2 it's great
@blackpenredpen6 жыл бұрын
Afaf Salem yup!!
@Arpansahaofficial5 жыл бұрын
But what is the relation of 't' with the slope of the point (x.y)?
@85439606 жыл бұрын
Since your first video on the hyperbolic trig functions, I've been wondering. We've used the unit circle and hyperbola. How about the other conic sections? Are there analogous elliptical trig functions and parabolic trig functions as well? If so, are they useful like circular and hyperbolic ones or just mathematical curiosities? I have a science background (chemistry) which included a fair amount of math but can't say I recall learning them but it seems like there's no reason for them to not exist.
@ЮрійЯрош-г8ь6 жыл бұрын
Interesting idea.
@MarioFanGamer6596 жыл бұрын
An ellipsis has got two radii and have a wide range of shapes. A unit ellipsis is, as you'd guessed, an ellipsis with rx and ry both being 1 i.e. a unit circle. You can say that a elliptical function exist although they're derived after the trigonometric functions by multiplying them with a constant. On the other hand, parabolic functions are a bit more complicated. A unit parabola's exist as it's graph is defined as 0 = x² - y, more commonly known as y = x². However, I don't think you can derive parabolic functions from that or if they do, they're unnecessary unlike the trigonometric and hyperbolic functions (seriously, I can't come up with the logic of the parabolic functions if you can create them).
@tupperwallace90486 жыл бұрын
Archimedes figured out the area inside a parabolic arc 2 centuries BC and he didn’t need no stinking calculus or exponential function to do it. The parabola is simple because there’s really only one of them, y equals x squared. Elliptical paths and the areas inside ellipses, on the other hand, became important to figure out when Kepler deduced the laws of planetary orbits. Squashing a circle was no longer good enough and Bessel had to compute the Bessel functions. So the answer to the question is no, there is no table of parabolic sines or elliptical cosines, but the mathematics of the curves are very important and practical.
@waterfirecards51286 жыл бұрын
Can u pls explain the Riemann Hypothesis proof? Thank u.
@76tricolor4 жыл бұрын
wonderful
@alexismoreno81483 жыл бұрын
Dear...I'm not totally convinced of what you've done. Please explain why you changed the variable t by u. Can explain also why you use sometimes t to talk about time and also to talk about 2 times the area of the figure? Why you mixed both variables if both are not the same?
@jenna.elisabet3 жыл бұрын
and that's pretty much it.
@futuresimple74775 жыл бұрын
First of all : i enjoy your videos very much. How you play with math is a joy for the brains :-) But now a question. cosh(t) is defined as 1/2(e^t + e^-t). From the picture the x coordinate of any point on the hyperbola is defined as cosh(2A) where a is the drawn area. What i don't get immediate is that this x coordinate also equals the definition of cosh.
@futuresimple74775 жыл бұрын
OK, I figured it out myself :-) 2 times the area A = ln(x+sqrt(x^2-1). And yes, 1/2(e^2A+e^-2A) = x ! QED
@ahmadkalaoun34736 жыл бұрын
It's wonderful... 😍😍
@Patapom36 жыл бұрын
Amazing!
@pierreabbat61576 жыл бұрын
the tea world and the yew world :D How about turning it 45° and getting the hyperbola xy=1/2?
How does t relate to the “normal” angle θ? I haven’t been able to find information on that relationship. All I know is that t must approach infinity as θ approaches 45 degrees.
@rafaellisboa84936 жыл бұрын
very nice
@demogorgon21254 жыл бұрын
He kinda got overexcited in the end...😂😂
@mazenelgabalawy39666 жыл бұрын
Man I've never seen you so excited before..
@blackpenredpen6 жыл бұрын
: )
@antimatter23766 жыл бұрын
5:13 x isn't a function of time, but just a function of t.
@adam195701204 жыл бұрын
IMO area = (1+exp(-2t))/4 + t/2
@Logicallymath3 жыл бұрын
could you do a video on hyperbolic angles
@granhermon26 жыл бұрын
Dr Peyam mode lol
@shamsunnahar63436 жыл бұрын
please make video on e^x power series
@namanmalhotra48726 жыл бұрын
great video! can you plz solve this integral dx/(tanx+cotx+secx+cosecx)
@franzschubert44806 жыл бұрын
What is sec(x)?
@VilemJankovsky6 жыл бұрын
@@franzschubert4480 sec(x) is the secant function. sec(x)=1/cos(x)
@sjoerdo69886 жыл бұрын
1/(tan(x)+cot(x)+sec(x)+cosec(x))= 1/(sinx/cosx+cosx/sinx+1/cosx+1/sinx)= sinxcosx/(sin^2x+cos^2x+sin(x)+cos(x)= sinxcosx/(1+sinx+cosx)= sinxcosx(1-sinx-cosx)/((1+sinx+cosx)*(1-sinx-cosx))= sinxcosx(1-sinx-cosx)/((1-(sinx+cosx)^2)= sinxcosx(1-sinx-cosx)/((1-1-2sinxcosx)= sinxcosx(1-sinx-cosx)/(-2sinxcosx)= (sinx+cosx-1)/2 so the integral becomes (cosx-sinx-x)/2
@edwardgalliano92473 жыл бұрын
I like hyperbolic cosine theta equals the quantity e to the i theta plus e to the minus i theta the quantity divided by two. I think cosh and sinh are wrong. I can get the right answer with normal trig functions.
@perveilov6 жыл бұрын
what is t? is it the 4th dimension plane variables?
@devinschlegel17636 жыл бұрын
Could you make a video relating the angle it makes with the curve to T
@dalenassar91525 жыл бұрын
What is that small print on your shirt?
@algirdasltu13896 ай бұрын
Why can you ignore the negative part of the hyperbola when you integrated?
@donwald3436 Жыл бұрын
5:12 "x is a function of time" we're on the hyperloop? lol
@quantanti6 жыл бұрын
please differential equation!!
@mohammadkhan3676 Жыл бұрын
live long sir
@moskthinks98016 жыл бұрын
Why not when you integrate y dx use y=x^2-1 and continue subs.
@blackpenredpen6 жыл бұрын
M. Shebl Bc I wanted to show how cool that parameterization is! : )
@MdAnik-og5sw4 жыл бұрын
Too good
@99selfmade216 жыл бұрын
Question why can you Just say 0 to t at the integral because if i translate the x to the t i would geht the Formula x=cosh(t) and so the First x is 1 you could Just See that arccosh(1)=t=0 so okay but If i would do the same with b then i would get arccosh (b)=t so the integral should Go from 0 to arccosh(b) isn't it? Or am i allowed to say b= cosh(t) so i would get t again?
@99selfmade216 жыл бұрын
Oh i think it does not Matter at the end but in reality you should have to write arccosh(b) but you need to substitute Back in anyway soooo😂
@MarioFanGamer6596 жыл бұрын
Just to clarify: The integral goes from a to b for x. a is defined as the left edge of the parabola i.e. 1 and b where the area ends which is cosh(t). Now let's follow the substitution: In the substitution, X is defined as cosh(u). In order to get the values for u, we solve for it so u = arccosh(X). Next, we change the integral borders due to the changed variable: a = 1 so the new bottom border is arccosh(1) = 0 and b = cosh(t) so the top border becomes t. So yes, b = cosh(t).
@99selfmade216 жыл бұрын
MarioFanGamer t and u are basically the same so yeah xD i've understood everything got just a little stuck for a moment no problem but thanks :)
@ssdd99116 жыл бұрын
came from twitter
@nitishsingh96335 жыл бұрын
What is t ??
@azmath20596 жыл бұрын
Well done but your starting off with the premise that x (t) and y (t) equal the hyperbolic functions and going from there. Try to prove that if the area in question is t/2 then x (t) & y (t) are the hyperbolic functions. That'll take you a while.
@GreenMeansGOF6 жыл бұрын
Wouldnt it be nicer to include the area under the x-axis so that all together, the area is t?
@blackpenredpen6 жыл бұрын
Sure. But in that case it wouldn't be similar to the unit circle situation.
@Rekko826 жыл бұрын
OMG! The guy is writing numbers and other stuff without computers or keyboards. How does he do that? Also his remote controller is very small.
@blackpenredpen6 жыл бұрын
Reijo P. ?
@Rekko826 жыл бұрын
blackpenredpen It was a joke. People don't usually use pens anymore, at least in Finland. Not even teachers, so this is suddenly very cool.
@blackpenredpen6 жыл бұрын
Reijo P. Oh I see!!
@TheBlueboyRuhan6 жыл бұрын
Just for fun, do you think you can do that integral I sent you? It would be awesome to see someone actually do it lol #YAY
@blackpenredpen6 жыл бұрын
Sir Rahmed which one is it??
@TheBlueboyRuhan6 жыл бұрын
@@blackpenredpen It was the indefinite intregral of: (x^2)/( cos(x) + sin(x) ) dx
@blackpenredpen6 жыл бұрын
Sir Rahmed oh! But I don't think I can do it tho..
@TheBlueboyRuhan6 жыл бұрын
@@blackpenredpen Noooo don't say that xp You're such an amazing teacher though; i understand if you won't do it, but I can guarantee every single one of your subscribers believe you can do it! Perhaps a certain... like goal on the next video to persuade you? ;)
@pranayvenkatesh88156 жыл бұрын
Sir Rahmed Multiply and divide by (cos x - sin x). Then you get x^2 (cos x - sin x) / cos2x. From here, it's pretty easy.
@davintjia28596 жыл бұрын
老師好, 請問您是從台灣來的還是中國來的呢~?
@blackpenredpen6 жыл бұрын
Taiwan!! : )
@davintjia28596 жыл бұрын
@@blackpenredpen That is soooooo cool, I moved to the US from Taiwan about 2 years ago. I am now enrolling in AP Calc AB class while self studying BC content, your video does help a lot and really fun to watch! Ignore those critics and KEPP IT UP!
@blackpenredpen6 жыл бұрын
謝謝, 你也很棒喔!老師為你加油!!
@kaursingh637 Жыл бұрын
thank u sir = please name book =thank u sir
@gabrielgoncalves12386 жыл бұрын
Cara faz vídeos legendados em português.
@EduardoHerrera-fr6bd6 жыл бұрын
Change the name! You're not blackpenredpen, you're blackpenredpengreenpen.
@blackpenredpen6 жыл бұрын
: )
@joao_pedro_c6 жыл бұрын
Why 480p
@blackpenredpen6 жыл бұрын
Jota oh god, I forgot to change back the setting
@justkarl29225 жыл бұрын
Long proofs taste much better.
@pojuantsalo34756 жыл бұрын
Why are your videos suddenly low-res? What happened to your camera?
@reversed41105 жыл бұрын
1:27 "Let's just go ahead do the meth Now!"
@ashtonsmith17304 жыл бұрын
xD sounds so wrong out of context (we know its a math channel so thats context)
@adam195701204 жыл бұрын
But for t=0 area = 1/2, not 0
@marioguercio54406 жыл бұрын
Este chinito tiende a complicar artificialmente el asunto. Supongo para que el vídeo dure un poco más.
@zachansen829310 ай бұрын
Hyper-balla? Never heard anyone say it like that. hyPERboLUH