Hyperbolic trig function, the input is twice of the area

  Рет қаралды 63,723

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер
@arequina
@arequina 6 жыл бұрын
I wish all instructors were as excited as you when they teach. More people would learn faster when you show such enthusiasm. Plus, it's infectious.
@masoncamera273
@masoncamera273 2 жыл бұрын
It's amazing that the only difference between the equations for a circle and a hyperbola is a minus sign but they produce very different functions
@carmangreenway
@carmangreenway 2 жыл бұрын
The similarity is due to them both being conic sections :)
@createyourownfuture5410
@createyourownfuture5410 2 жыл бұрын
@@carmangreenway I have a question: Why do we study conic sections?
@carmangreenway
@carmangreenway 2 жыл бұрын
@@createyourownfuture5410 they're very useful for orbits in particular. Zach Star did a great video on that and other uses :)
@createyourownfuture5410
@createyourownfuture5410 2 жыл бұрын
@@carmangreenway oh, thanks
@facundo_5090
@facundo_5090 2 жыл бұрын
@@createyourownfuture5410 i think they're useful for 3d things in general (quadric surfaces and that kind of things)
@harrisidh
@harrisidh 6 жыл бұрын
In this video blackpenredpen has become blackpenredpenbluepengreenpen
@KnakuanaRka
@KnakuanaRka 6 жыл бұрын
Harris Idham Onepentwopenredpenbluepen
@ineshmukherjee8338
@ineshmukherjee8338 5 жыл бұрын
Don’t mind the purple pen
@non-inertialobserver946
@non-inertialobserver946 6 жыл бұрын
He got very excited at the end of the video lmao
@tofu8676
@tofu8676 6 жыл бұрын
*cancelling intensifies*
@WitchidWitchid
@WitchidWitchid 4 жыл бұрын
When you work on a long maths problem and you and up with a good result you feel highly elated. There is an endorphin rush. You are literally getting high via your brain's natural chemicals.
@ashtonsmith1730
@ashtonsmith1730 4 жыл бұрын
@@WitchidWitchid now i cant view math the same thanks
@johnrodonis4186
@johnrodonis4186 2 жыл бұрын
More astounding to me is that "t" = ln(cosh(t)+sinh(t)) where cosh(t) = x and sinh(t) = y on the curve: x^2-y^2=1 Hence, take ln(x+y) of any (x,y) on that curve and you have the hyperbolic angle associated with that point. Hyperbolae are SO MUCH MORE INTERESTING than circles. :)
@suomeaboo
@suomeaboo Жыл бұрын
that's so cool, indeed the hyperbola is really interesting
@ronanh2184
@ronanh2184 3 жыл бұрын
He gets so excited at the end it’s the sweetest thing I’ve ever seen🥺
@marioguitarra1
@marioguitarra1 4 жыл бұрын
The most interesting thing is that: THIS IS THE SAME FORMULA OF THE AREA OF A SLICE OF A UNIT CIRCLE! (Just change t -> theta)
@johnholme783
@johnholme783 5 жыл бұрын
Thanks for taking the time to produce this video, I didn’t think the proof would be so simple. It’s long-winded but quite straight forward.
@stevewhitt9109
@stevewhitt9109 Жыл бұрын
you are the very most accurate teacher
@timotejmlakar4502
@timotejmlakar4502 6 жыл бұрын
Honestly this is exactly why I adore maths so much. Great video, great solution. Keep it up!
@zack_120
@zack_120 3 жыл бұрын
Excellent! You tend to do the work that other channels don't or are unable to do. Keep up the good work 👍👍👍
@Mal-Function4
@Mal-Function4 4 жыл бұрын
I was just as excited as him in the end. this was really cool
@hallowkrubics8718
@hallowkrubics8718 6 жыл бұрын
Another great video! Keep it up
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Master JH thanks!!!!
@benjaminparra4672
@benjaminparra4672 2 жыл бұрын
So cool, great video, great result, thanks for the video!!!
@pranayvenkatesh8815
@pranayvenkatesh8815 6 жыл бұрын
Awesome video, blackpen!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Pranay Venkatesh thanks!!
@Gold161803
@Gold161803 6 жыл бұрын
The isn't its are back! I'm so happy!!
@orodriguez947
@orodriguez947 2 жыл бұрын
He's the man!
@CaptHowdy1155
@CaptHowdy1155 Жыл бұрын
This was so cool! I love proofs from calculations. Formal logic and proofs are my Achilles heel.
@eriche8469
@eriche8469 4 жыл бұрын
He is truely passionate about math
@avi_mukesh
@avi_mukesh 6 жыл бұрын
Just what I needed. Thank you!
@JohnSmith-iu3fc
@JohnSmith-iu3fc 5 жыл бұрын
Thank you! I appreciate your hard job!!!
@prakharshankar8636
@prakharshankar8636 6 жыл бұрын
New subscriber , dude ur videos are awesome and unique keep doing MATHS love from INDIA.👌👌
@edgardojaviercanu4740
@edgardojaviercanu4740 3 жыл бұрын
well done, teacher!
@asev1969
@asev1969 3 жыл бұрын
just tea over two and two beneath tea
@jammy12
@jammy12 5 жыл бұрын
Cool, great explanation thanks
@foffif2011
@foffif2011 6 жыл бұрын
He was so excited at the end! 😂😁
@Rekko82
@Rekko82 6 жыл бұрын
Yeah, because this entire video was cool although I don't understand what he is talking about. I gave it a like because it is wonderful to see shiny happy people all around.
@abada00zhanghongbing
@abada00zhanghongbing 6 жыл бұрын
if we can definite the t with the length of arc? instead of t/2 with the area. like a circle
@tomatrix7525
@tomatrix7525 4 жыл бұрын
Soo cool! I saw Dr payems video where he derived tye definition of sinh and cosh, but he started with the assumption of the outer area being t/2 (he used alpha instead of t...Doesn’t matter) and I was curious as to why. This video nicely answers that! I am just not able to take things for granted in math, I must see why!!!
@ny6u
@ny6u 4 жыл бұрын
Very cool 👍🏻
@ltuxasx3117
@ltuxasx3117 6 жыл бұрын
Can you do video on new riemanns hypothesis ,,proof"?
@kostantinos2297
@kostantinos2297 6 жыл бұрын
It hasn't been published yet, it is currently under peer review.
@kostantinos2297
@kostantinos2297 6 жыл бұрын
Actually, he has published a short and simple "proof", but he relies on the so-called Todd function, which is a function that he has formulated and has not published the proof of yet, except for his paper that is under peer review. So, we wait.
@ltuxasx3117
@ltuxasx3117 6 жыл бұрын
Oh ok, thank you
@michel_dutch
@michel_dutch 6 жыл бұрын
There will be no need for that. It's quite a complicated situation... see meta.mathoverflow.net/questions/3894/is-there-a-way-to-discuss-the-correctness-of-the-proof-of-the-rh-by-atiyah-in-mo for some background.
@kostantinos2297
@kostantinos2297 6 жыл бұрын
@@michel_dutch He did claim that he had come up with a simple proof, which sounds kind of suspicious. But I guess that time will tell, since his work needs to be sufficiently examined first.
@douglasespindola5185
@douglasespindola5185 2 жыл бұрын
Don't matter how good you're on something, there will always be an asian better than you, specially in maths! Great explanation! Thank you so much and greetings from Brazil!
@ericklimones
@ericklimones 6 жыл бұрын
11:28 you were really excited to conclude the viedo
@gordonchan4801
@gordonchan4801 6 жыл бұрын
"oh, look at that!"
@vuyyurisatyasrinivasarao3140
@vuyyurisatyasrinivasarao3140 4 жыл бұрын
Excellent
@vivekchowdhury8879
@vivekchowdhury8879 6 жыл бұрын
Great !!! Love it
@guitarttimman
@guitarttimman 5 жыл бұрын
Very good!
@afafsalem739
@afafsalem739 6 жыл бұрын
At the end the area is equal to t/2 it's great
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Afaf Salem yup!!
@Arpansahaofficial
@Arpansahaofficial 5 жыл бұрын
But what is the relation of 't' with the slope of the point (x.y)?
@8543960
@8543960 6 жыл бұрын
Since your first video on the hyperbolic trig functions, I've been wondering. We've used the unit circle and hyperbola. How about the other conic sections? Are there analogous elliptical trig functions and parabolic trig functions as well? If so, are they useful like circular and hyperbolic ones or just mathematical curiosities? I have a science background (chemistry) which included a fair amount of math but can't say I recall learning them but it seems like there's no reason for them to not exist.
@ЮрійЯрош-г8ь
@ЮрійЯрош-г8ь 6 жыл бұрын
Interesting idea.
@MarioFanGamer659
@MarioFanGamer659 6 жыл бұрын
An ellipsis has got two radii and have a wide range of shapes. A unit ellipsis is, as you'd guessed, an ellipsis with rx and ry both being 1 i.e. a unit circle. You can say that a elliptical function exist although they're derived after the trigonometric functions by multiplying them with a constant. On the other hand, parabolic functions are a bit more complicated. A unit parabola's exist as it's graph is defined as 0 = x² - y, more commonly known as y = x². However, I don't think you can derive parabolic functions from that or if they do, they're unnecessary unlike the trigonometric and hyperbolic functions (seriously, I can't come up with the logic of the parabolic functions if you can create them).
@tupperwallace9048
@tupperwallace9048 6 жыл бұрын
Archimedes figured out the area inside a parabolic arc 2 centuries BC and he didn’t need no stinking calculus or exponential function to do it. The parabola is simple because there’s really only one of them, y equals x squared. Elliptical paths and the areas inside ellipses, on the other hand, became important to figure out when Kepler deduced the laws of planetary orbits. Squashing a circle was no longer good enough and Bessel had to compute the Bessel functions. So the answer to the question is no, there is no table of parabolic sines or elliptical cosines, but the mathematics of the curves are very important and practical.
@waterfirecards5128
@waterfirecards5128 6 жыл бұрын
Can u pls explain the Riemann Hypothesis proof? Thank u.
@76tricolor
@76tricolor 4 жыл бұрын
wonderful
@alexismoreno8148
@alexismoreno8148 3 жыл бұрын
Dear...I'm not totally convinced of what you've done. Please explain why you changed the variable t by u. Can explain also why you use sometimes t to talk about time and also to talk about 2 times the area of the figure? Why you mixed both variables if both are not the same?
@jenna.elisabet
@jenna.elisabet 3 жыл бұрын
and that's pretty much it.
@futuresimple7477
@futuresimple7477 5 жыл бұрын
First of all : i enjoy your videos very much. How you play with math is a joy for the brains :-) But now a question. cosh(t) is defined as 1/2(e^t + e^-t). From the picture the x coordinate of any point on the hyperbola is defined as cosh(2A) where a is the drawn area. What i don't get immediate is that this x coordinate also equals the definition of cosh.
@futuresimple7477
@futuresimple7477 5 жыл бұрын
OK, I figured it out myself :-) 2 times the area A = ln(x+sqrt(x^2-1). And yes, 1/2(e^2A+e^-2A) = x ! QED
@ahmadkalaoun3473
@ahmadkalaoun3473 6 жыл бұрын
It's wonderful... 😍😍
@Patapom3
@Patapom3 6 жыл бұрын
Amazing!
@pierreabbat6157
@pierreabbat6157 6 жыл бұрын
the tea world and the yew world :D How about turning it 45° and getting the hyperbola xy=1/2?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Pierre Abbat trying to be funny?
@chouechiu7431
@chouechiu7431 6 жыл бұрын
Pierre Abbat 雙曲線方程式 y^2-x^2=1 如何旋轉pi/4成 xy=1/2 如下 原座標 e^ia=x+iy=cos(a)+isin(a) 新坐標b=a-pi/4 e^ib= x1+iy1 = cos(b)+isin(b) 則a=b+pi/4 e^ia= e^i(b+pi /4 ) =cos(b+pi /4)+isin(b +pi /4) =((cos(b)*cos (pi /4 ) -sin (b)* sin (pi /4 ))+ i(cos (b)* sin (pi /4 )+sin (b) *cos (pi /4 ))) = ((cos(b)/sqrt(2) -sin (b) /sqrt(2) )+ i(cos (b) /sqrt(2) +sin (b) /sqrt(2) )) 其中x1= cos(b) ,y1= sin(b) 原式為 x=x1 /sqrt(2)-y1 /sqrt(2)=(x1-y1) /sqrt(2) y=x1 /sqrt(2)+y1 /sqrt(2)=(x1+y1) /sqrt(2) 雙曲線方程式 y^2-x^2=1 (x1+y1) ^2/sqrt(2)^2-(x1-y1)^2 /sqrt(2)^2=1 1/2*((x1^2+2x1y1+y1^2)-(x1^2-2x1y1+y1^2))=1 1/2(4x1y1)=1 則 x1y1=1/2 此即為新座標雙曲方程式
@umar-ot6mi
@umar-ot6mi 4 жыл бұрын
@@blackpenredpen how can I message you privately?
@akshataggarwal4002
@akshataggarwal4002 4 жыл бұрын
@@umar-ot6mi u canot XD
@david-yt4oo
@david-yt4oo 6 жыл бұрын
so good
@blackpenredpen
@blackpenredpen 6 жыл бұрын
daniel : )
@kiteivideo
@kiteivideo 6 жыл бұрын
How does t relate to the “normal” angle θ? I haven’t been able to find information on that relationship. All I know is that t must approach infinity as θ approaches 45 degrees.
@rafaellisboa8493
@rafaellisboa8493 6 жыл бұрын
very nice
@demogorgon2125
@demogorgon2125 4 жыл бұрын
He kinda got overexcited in the end...😂😂
@mazenelgabalawy3966
@mazenelgabalawy3966 6 жыл бұрын
Man I've never seen you so excited before..
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@antimatter2376
@antimatter2376 6 жыл бұрын
5:13 x isn't a function of time, but just a function of t.
@adam19570120
@adam19570120 4 жыл бұрын
IMO area = (1+exp(-2t))/4 + t/2
@Logicallymath
@Logicallymath 3 жыл бұрын
could you do a video on hyperbolic angles
@granhermon2
@granhermon2 6 жыл бұрын
Dr Peyam mode lol
@shamsunnahar6343
@shamsunnahar6343 6 жыл бұрын
please make video on e^x power series
@namanmalhotra4872
@namanmalhotra4872 6 жыл бұрын
great video! can you plz solve this integral dx/(tanx+cotx+secx+cosecx)
@franzschubert4480
@franzschubert4480 6 жыл бұрын
What is sec(x)?
@VilemJankovsky
@VilemJankovsky 6 жыл бұрын
@@franzschubert4480 sec(x) is the secant function. sec(x)=1/cos(x)
@sjoerdo6988
@sjoerdo6988 6 жыл бұрын
1/(tan(x)+cot(x)+sec(x)+cosec(x))= 1/(sinx/cosx+cosx/sinx+1/cosx+1/sinx)= sinxcosx/(sin^2x+cos^2x+sin(x)+cos(x)= sinxcosx/(1+sinx+cosx)= sinxcosx(1-sinx-cosx)/((1+sinx+cosx)*(1-sinx-cosx))= sinxcosx(1-sinx-cosx)/((1-(sinx+cosx)^2)= sinxcosx(1-sinx-cosx)/((1-1-2sinxcosx)= sinxcosx(1-sinx-cosx)/(-2sinxcosx)= (sinx+cosx-1)/2 so the integral becomes (cosx-sinx-x)/2
@edwardgalliano9247
@edwardgalliano9247 3 жыл бұрын
I like hyperbolic cosine theta equals the quantity e to the i theta plus e to the minus i theta the quantity divided by two. I think cosh and sinh are wrong. I can get the right answer with normal trig functions.
@perveilov
@perveilov 6 жыл бұрын
what is t? is it the 4th dimension plane variables?
@devinschlegel1763
@devinschlegel1763 6 жыл бұрын
Could you make a video relating the angle it makes with the curve to T
@dalenassar9152
@dalenassar9152 5 жыл бұрын
What is that small print on your shirt?
@algirdasltu1389
@algirdasltu1389 6 ай бұрын
Why can you ignore the negative part of the hyperbola when you integrated?
@donwald3436
@donwald3436 Жыл бұрын
5:12 "x is a function of time" we're on the hyperloop? lol
@quantanti
@quantanti 6 жыл бұрын
please differential equation!!
@mohammadkhan3676
@mohammadkhan3676 Жыл бұрын
live long sir
@moskthinks9801
@moskthinks9801 6 жыл бұрын
Why not when you integrate y dx use y=x^2-1 and continue subs.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
M. Shebl Bc I wanted to show how cool that parameterization is! : )
@MdAnik-og5sw
@MdAnik-og5sw 4 жыл бұрын
Too good
@99selfmade21
@99selfmade21 6 жыл бұрын
Question why can you Just say 0 to t at the integral because if i translate the x to the t i would geht the Formula x=cosh(t) and so the First x is 1 you could Just See that arccosh(1)=t=0 so okay but If i would do the same with b then i would get arccosh (b)=t so the integral should Go from 0 to arccosh(b) isn't it? Or am i allowed to say b= cosh(t) so i would get t again?
@99selfmade21
@99selfmade21 6 жыл бұрын
Oh i think it does not Matter at the end but in reality you should have to write arccosh(b) but you need to substitute Back in anyway soooo😂
@MarioFanGamer659
@MarioFanGamer659 6 жыл бұрын
Just to clarify: The integral goes from a to b for x. a is defined as the left edge of the parabola i.e. 1 and b where the area ends which is cosh(t). Now let's follow the substitution: In the substitution, X is defined as cosh(u). In order to get the values for u, we solve for it so u = arccosh(X). Next, we change the integral borders due to the changed variable: a = 1 so the new bottom border is arccosh(1) = 0 and b = cosh(t) so the top border becomes t. So yes, b = cosh(t).
@99selfmade21
@99selfmade21 6 жыл бұрын
MarioFanGamer t and u are basically the same so yeah xD i've understood everything got just a little stuck for a moment no problem but thanks :)
@ssdd9911
@ssdd9911 6 жыл бұрын
came from twitter
@nitishsingh9633
@nitishsingh9633 5 жыл бұрын
What is t ??
@azmath2059
@azmath2059 6 жыл бұрын
Well done but your starting off with the premise that x (t) and y (t) equal the hyperbolic functions and going from there. Try to prove that if the area in question is t/2 then x (t) & y (t) are the hyperbolic functions. That'll take you a while.
@GreenMeansGOF
@GreenMeansGOF 6 жыл бұрын
Wouldnt it be nicer to include the area under the x-axis so that all together, the area is t?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Sure. But in that case it wouldn't be similar to the unit circle situation.
@Rekko82
@Rekko82 6 жыл бұрын
OMG! The guy is writing numbers and other stuff without computers or keyboards. How does he do that? Also his remote controller is very small.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Reijo P. ?
@Rekko82
@Rekko82 6 жыл бұрын
blackpenredpen It was a joke. People don't usually use pens anymore, at least in Finland. Not even teachers, so this is suddenly very cool.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Reijo P. Oh I see!!
@TheBlueboyRuhan
@TheBlueboyRuhan 6 жыл бұрын
Just for fun, do you think you can do that integral I sent you? It would be awesome to see someone actually do it lol #YAY
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Sir Rahmed which one is it??
@TheBlueboyRuhan
@TheBlueboyRuhan 6 жыл бұрын
@@blackpenredpen It was the indefinite intregral of: (x^2)/( cos(x) + sin(x) ) dx
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Sir Rahmed oh! But I don't think I can do it tho..
@TheBlueboyRuhan
@TheBlueboyRuhan 6 жыл бұрын
@@blackpenredpen Noooo don't say that xp You're such an amazing teacher though; i understand if you won't do it, but I can guarantee every single one of your subscribers believe you can do it! Perhaps a certain... like goal on the next video to persuade you? ;)
@pranayvenkatesh8815
@pranayvenkatesh8815 6 жыл бұрын
Sir Rahmed Multiply and divide by (cos x - sin x). Then you get x^2 (cos x - sin x) / cos2x. From here, it's pretty easy.
@davintjia2859
@davintjia2859 6 жыл бұрын
老師好, 請問您是從台灣來的還是中國來的呢~?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Taiwan!! : )
@davintjia2859
@davintjia2859 6 жыл бұрын
@@blackpenredpen That is soooooo cool, I moved to the US from Taiwan about 2 years ago. I am now enrolling in AP Calc AB class while self studying BC content, your video does help a lot and really fun to watch! Ignore those critics and KEPP IT UP!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
謝謝, 你也很棒喔!老師為你加油!!
@kaursingh637
@kaursingh637 Жыл бұрын
thank u sir = please name book =thank u sir
@gabrielgoncalves1238
@gabrielgoncalves1238 6 жыл бұрын
Cara faz vídeos legendados em português.
@EduardoHerrera-fr6bd
@EduardoHerrera-fr6bd 6 жыл бұрын
Change the name! You're not blackpenredpen, you're blackpenredpengreenpen.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@joao_pedro_c
@joao_pedro_c 6 жыл бұрын
Why 480p
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Jota oh god, I forgot to change back the setting
@justkarl2922
@justkarl2922 5 жыл бұрын
Long proofs taste much better.
@pojuantsalo3475
@pojuantsalo3475 6 жыл бұрын
Why are your videos suddenly low-res? What happened to your camera?
@reversed4110
@reversed4110 5 жыл бұрын
1:27 "Let's just go ahead do the meth Now!"
@ashtonsmith1730
@ashtonsmith1730 4 жыл бұрын
xD sounds so wrong out of context (we know its a math channel so thats context)
@adam19570120
@adam19570120 4 жыл бұрын
But for t=0 area = 1/2, not 0
@marioguercio5440
@marioguercio5440 6 жыл бұрын
Este chinito tiende a complicar artificialmente el asunto. Supongo para que el vídeo dure un poco más.
@zachansen8293
@zachansen8293 10 ай бұрын
Hyper-balla? Never heard anyone say it like that. hyPERboLUH
@MrQwefty
@MrQwefty 6 жыл бұрын
#YAY!
Infinite Continued Fractions, simple or not?
11:08
blackpenredpen
Рет қаралды 132 М.
The complex relationship between regular and hyperbolic trig functions
16:23
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
THE CONFUSING DERIVATIVES
12:32
blackpenredpen
Рет қаралды 121 М.
You probably haven't solved a quartic equation like this before!
12:59
the COOLEST limit on YouTube!
9:50
blackpenredpen
Рет қаралды 49 М.
Stockfish Just Solved Chess
27:40
GothamChess
Рет қаралды 828 М.
What is the deal with (hyperbolic) trig functions?
10:21
Michael Penn
Рет қаралды 121 М.
Magnus Carlsen is broken
27:32
GothamChess
Рет қаралды 426 М.
Introduction to Hyperbolic Trig Functions
8:21
blackpenredpen
Рет қаралды 384 М.
Supreme Integral with Feynman's Trick
17:53
blackpenredpen
Рет қаралды 213 М.
Finding the BIGGEST rectangle under y=x^3 (but NO calculus!)
9:15
blackpenredpen
Рет қаралды 48 М.
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН