Scuola Normale admission test, 2016

  Рет қаралды 26,908

Gaetano Di Caprio - Invito alla Matematica

Gaetano Di Caprio - Invito alla Matematica

Күн бұрын

Пікірлер: 79
@andreapedron568
@andreapedron568 Жыл бұрын
Complimenti per questo canale che ho scoperto da poco, ma che trovo di qualità, estremamente piacevole e stimolante. Ho trovato molto elegante la soluzione al problema, ottenuta per fattorializzazione dell'espressione e ricerca dei divisori del termine noto. Io ho utilizzato un metodo più farraginoso che comunque le propongo. Da xy=6x+6y ottengo x=6x/y+6, poiché x intero y è divisore di 6x e dunque tutti i fattori primi di y diversi da 2 e da 3 sono presenti in x con esponente almeno uguale all'esponente con cui compaiono in y. Per la simmetria del problema, scrivendo y=6+6y/x si ha che tutti i fattori primi di x diversi da 2 e da 3 sono presenti in y con esponente almeno uguale all'esponente con cui compaiono in x e dunque ogni fattore primo diverso da 2 e da 3 compare in x e y con lo stesso esponente. Per quanto riguarda i fattori 2 e 3 questi, essendo i fattori di 6, possono comparire con esponenti diversi in x e y ma gli esponenti possono differire al più di 1. A questo punto il rapporto r=y/x deve essere scrivibile come una frazione, che dopo semplificazione, ha numeratore e denominatore ottenuti combinando i fattori 2 e 3 presi solo una volta. Ipotizzando y>=x, i soli rapporti r possibili per y e x sono allora {1, 2, 3, 6, 3/2} a cui vanno affiancati i valori per y
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto interessante! ottimo
@koenigkiss
@koenigkiss Жыл бұрын
Gent.mo , la Sua capacità di spiegare e far apprendere è davvero notevole, come già successo apprezzo e La ringrazio.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie a lei!
@MegaMarco1906
@MegaMarco1906 Жыл бұрын
Basterebbe isolare la x o la y nell'equazione iniziale trovando quindi x=(6y)/(y-6) con y >6 trovi tutte le coppie possibili
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì è un valido metodo alternativo
@18feb2013
@18feb2013 Жыл бұрын
Però si andrebbe a tentativi per trovare le coppie? Per esempio, con y=11, la coppia che si ottiene sarebbe da scartare perché x non è intero.
@luigibaronchelli3183
@luigibaronchelli3183 Жыл бұрын
prima di procedere a tentativi dovresti però trovare un margine superiore per y oltre il quale sei sicuro di non trovare più valori di x interi, altrimenti non hai modo di sapere se le coppie da te trovate siano effettivamente tutte quelle esistenti. Il problema però è che posta l'equazione in quella forma non vedo modo di ricavare facilmente un possibile margine
@alessandrolocatelli
@alessandrolocatelli 10 ай бұрын
In realtà il margine superiore è 12 (compreso), data la simmetria del problema. Oltre a questo valore infatti si ritroverebbero per y gli stessi valori già trovati per x (es. y=15, x=10).
@ciaolucio
@ciaolucio Жыл бұрын
Quesiti davvero stuzzicanti, ottima esposizione.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@BC107BP
@BC107BP Жыл бұрын
L'inverso della prima riscrittura dell'equazione mostrata nel video, che quindi sarebbe xy/(x+y), è una formula basilare in elettrotecnica per calcolare la resistenza equivalente di un parallelo di due resistenze (ad es. la resistenza di un parallelo tra 150 Ω e 75 Ω equivale a 50 Ω, così come un parallelo tra due resistenze da 100 Ω è sempre 50 Ω, ecc.). Da tecnico infatti leggendo la domanda ho subito pensato al suo risvolto "fisico", ovvero "mi stanno chiedendo di trovare due resistenze di valore intero che messe in parallelo mi diano 6 (Ω)". Per questo, ritengo, il vincolo sulla positività dei valori di X e Y. Ottima spiegazione comunque, complimenti!
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto interessante, grazie!
@SigfriedNothung
@SigfriedNothung 11 ай бұрын
Ottima spiegazione esauriente
@GaetanoDiCaprio
@GaetanoDiCaprio 11 ай бұрын
Grazie
@marcelloberlich1803
@marcelloberlich1803 Жыл бұрын
Seguo da poco e sono un po' 'digiuno': la scelta del '36' non è arbitraria, serve proprio quel numero giusto? Generalizzando: se nell'equazione di partenza anziché 1/6 avessimo avuto 1/8, avremmo usato 64, o mi sfugge qualcosa?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Certo, soltanto il 36 funziona e se fosse stato 8 avremmo usato 64
@Yuriy627
@Yuriy627 Жыл бұрын
not sure why was it recommended to me (I speak no Italian), but it's cool that you're promoting math (and have a pleasant voice too)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Thank you! Do you usually watch math videos?
@Yuriy627
@Yuriy627 Жыл бұрын
@@GaetanoDiCaprio yes 😊 mainly 3blue1brown
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@Yuriy627 wow, that's super cool! Anyway I will start to add english subtitles to my videos... Stay tuned!
@Yuriy627
@Yuriy627 Жыл бұрын
@@GaetanoDiCaprio great idea! Hope you'll attract more viewers 😊
@perakojot6524
@perakojot6524 Жыл бұрын
Since (x+y)=xy/6 assuming that x
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Nice
@salvatorerandazzo2137
@salvatorerandazzo2137 Жыл бұрын
Sig. Di Caprio, nella congettura di Erdos Strauss gli interi x, y, z devono differire tra loro o potrebbe esserci, ad esempio x=y?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
La congettura originaria non richiede che x, y e z siano distinti.
@salvatorerandazzo2137
@salvatorerandazzo2137 Жыл бұрын
@@GaetanoDiCaprio grazie per la risposta
@user-bx7rw1pt4p
@user-bx7rw1pt4p Жыл бұрын
Secondo me da 2:04 si potrebbe anche isolare la x, in modo da ottenere x=6+36/(y-6) ed essendo x intero si può dire che y-6 è un divisore di 36... da qui seguono i vari casi... il suo metodo sicuramente è più immediato ma richiede quel colpo d'occhio di fare +-36
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Metodo alternativo assolutamente corretto! C'è da dire, però, che, in realtà, ricavando la x si ottiene x=(6y)/(y-6), e per passare a x=6+36/(y-6) ci vuole comunque un "guizzo" non ovvio...
@antonioorlando5246
@antonioorlando5246 Жыл бұрын
Il guizzo sarebbe trasformare la frazione 'impropria' in un numero mixto, e comunque il procedimento è equivalente poi al suo con il 36 ... è la parte creativa che accennava - complimenti per il canale Professore DiCaprio. L'ho scoperto da pochissimo e mi sono subito iscritto. La seguo dall'Argentina. Grazie e Ad maiora semper@@GaetanoDiCaprio
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@antonioorlando5246 grazie mille!
@francescoabbruzzese170
@francescoabbruzzese170 Жыл бұрын
In realtà anche la ricerca per tentativi è abbastanza facile. Se supponiamo che x sia il maggiore deve essere compreso tra 7 e 12 altrimenti o quanlunque altro y non gli farebbe mai raggiungere 1/6 (se fosse maggiore di 12) o da solo 1/x raggiungerebbe 1/6 (se fosse minore di 7). A quel punto per ogni x tra 7 e 12csi trova y dato x ed è fatta. L'unico valore che non porta a soluzioni è x=11. Analoghe maggiorazioni si possono fare anche considerando che i numeri possono essere negativi, ma purtroppo in questo caso si raddoppiano i tentativi da fare perchè si deve scendere a x=1. La tua soluzione invece permette di ottenere le soluzioni negative per simmetria. Credo che il fatto di poter ottenere le negative per simmetria, però sia vero per una classe moltoi più ampia di equazioni deofantine che hanno le possibili soluzioni limitate in un intervallo (come accade in questo caso). Per quanto intuisca che una opportuna traslazione e successiva traslazione inversa possano ottenere lo scopo non ho trovato ancor un modo generale di trovare in centro di simmetria nel quale effettuare la traslazione. Di certo quando le soluzioni sono limitate in un intervallo una traslazione elimina la seccatura di gestire valori negativi, però credo che sotto condizioni abbastanza generali (ma non sempre) esista un centro di simmetria che permetta di dimezzare poi il lavoro da fare per tentativi. Se trovo come fare (quando ho tempo) lo pubblico qui...
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Non vedo l'ora
@sergiodorsi6457
@sergiodorsi6457 Жыл бұрын
Bellissimo! grazie!
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie!
@riccardorizzi79
@riccardorizzi79 Жыл бұрын
Ottimo 👍👍👍
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@marcoaltamura7512
@marcoaltamura7512 Жыл бұрын
Non so se sia stato detto nel video ma le coppie ordinate che sono soluzioni sono il doppio di quelle mostrate per la simmetria del problema, corretto?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
La risposta ovviamente è nel video
@stefanomagrinialunno8166
@stefanomagrinialunno8166 Жыл бұрын
La congettura di erdos la si potrebbe provare a formulare generalizzandola (Magari assistendosi con dei pc) In pratica per ogni frazione trovo il numero minimo di frazioni unitarie che possono rappresentarlo come somma egiziana. E boh, magari uno nota una qualche regola...
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Prova!
@ikarugaxx3749
@ikarugaxx3749 Жыл бұрын
Certo è curioso fare una congettura come quella che chiude questo video. Se non è stata dimostrata, come viene in mente?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ci sono molte congetture non dimostrate in matematica. Possono venire in mente magari dall'osservazione di molti casi particolari. O da altri misteriosi meccanismi della mente dei grandi matematici.
@wilhelm840904
@wilhelm840904 Жыл бұрын
Si può osservare che se x>12 allora 6
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì è un valido metodo alternativo
@18feb2013
@18feb2013 Жыл бұрын
Non penso mi sarebbe mai venuto in mente quel passaggio del video!! Pulito e rapido il procedimento. Io, dopo intense elucubrazioni e aver sostituito y con x+a e risolto per x, ho dovuto scomodare le terne pitagoriche!!! Passaggi: xy -6x - 6y = 0 Si pone y = x + a, a intero positivo (questa restrizione non cambia i calcoli data l'intercambiabilità delle incognite -- se fosse negativo, basterebbe sostituire a x y + |a| e risolvere rispetto a y). Sostituendo, si ottiene: x^2 + (a-12)x - 6a = 0 le cui soluzioni sono x =(1/2)(12 - a +/- radq(a^2+12^2)) Se a = 0, x = y = 12. Se a è diverso da 0, perché x sia maggiore di 0 si considera il segno positivo davanti alla radice quadrata radq(.). Siccome b = radq(.) dev'essere un numero intero, a, 12, b costituiscono una terna pitagorica. Le uniche terne pitagoriche fondamentali che contengono 12 o suoi sottomultipli sono: (3, 4, 5), (5, 12, 13),(12, 35, 37). Nel caso di (3, 4, 5), le terne derivate possono essere o (12, 16, 20), con a = 16 e b = 20, e quindi x = 8 e y = 24; oppure (9, 12, 15), con a = 9 e b = 15, e quindi x = 9 e y = 18. Nel caso di (5, 12, 13), a = 5, b = 13, quindi x = 10 e y = 15 Infine nel caso di (12, 35, 37), a = 35 e b = 37, quindi x = 7 e y = 42. Per x, y negativi i passaggi sono analoghi.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto originale!!! Interessante! Forse potrebbe interessarle questo mio video sulle terne pitagoriche kzbin.info/www/bejne/mJ_PdGqwgqZ2r5Y
@andreaboraschi7872
@andreaboraschi7872 Жыл бұрын
Ottimo, ricordo una variazione sul tema in una olimpiade di mate del ‘93 o ‘94 ,
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👍
@terter3033
@terter3033 Жыл бұрын
Io l'ho risolto differentemente. Ho supposto x >= y cosai che 1/y >= 1/x. Quindi possiamo notare che 1/x+1/y
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto bene!
@carlorossi2788
@carlorossi2788 Жыл бұрын
geniale
@Zonnymaka
@Zonnymaka Жыл бұрын
L'ho risolto anch'io col medesimo ragionamento ma decisamente più semplificato. Osservo banalmente che le soluzioni sono simmetriche. Quindi partiamo vedendo se x=y è una soluzione (ed è così) e la utilizzo come massimo. Poi noto che 1/y6. Per cui 6
@andreadevescovi4166
@andreadevescovi4166 Жыл бұрын
Bello, avevo preso una strada sbagliata cercando i prodotti tra due numeri 6 volte superiori alla loro somma….. finendo sulle eq. di secondo grado somma prodotto delle radici…. Insomma un casino :)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Tentare di risolvere un quesito, anche non riuscendoci, è sempre un ottimo esercizio
@danielecini2403
@danielecini2403 Жыл бұрын
Professore io avevo pensato di scrivere la relazione in modo che y= k*x (con k appartenente ad N). Ed ho trovato altre soluzioni (e, come potete notare, sono infinite al variare di "n"). Ho pensato di modificare così il problema perché sta scritto, nella traccia, di trovare degli interi positivi e nulla mi diceva che non potessi stabilire una relazione del genere. Come mai è errore assumere una tale relazione tra x ed y?
@user-bx7rw1pt4p
@user-bx7rw1pt4p Жыл бұрын
Se k sta in N allora stai assumendo che x dividi y (che tra l'altro neanche è vero essendo la coppia (10,15) una soluzione).. quindi dovresti scrivere: k sta in Q t.x. kx intero. Però credo che renderesti piu complesso il problema
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Prima di risponderti ti chiedo: mi dici almeno una delle soluzioni aggiuntive che hai trovato?
@danielecini2403
@danielecini2403 Жыл бұрын
@@GaetanoDiCaprioIn realtà mi sono accorto che quelle soluzioni che ritenevo aggiuntive in realtà sono comprese e che, inoltre, non riesco ad ottenere infinite soluzioni ed anzi: le soluzioni (10; 15) e (15; 10) non posso ricavarle in alcun modo se "k" appartiene ad N. Chiedo scusa per la mia distrazione😅. Credo che l'errore stia nell'assumere una proprietà P solamente perché il problema mi fornisce un' indeterminazione su questo suo utilizzo. Giusto? Grazie in anticipo per la risposta🙂.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@danielecini2403 Dato che x e y sono interi non si può supporre che uno sia multiplo dell'altro, è una condizione aggiuntiva che non ha nulla a che vedere col problema. Se x e y fossero reali allora un approccio del genere potrebbe avere senso
@sergiobuschi4201
@sergiobuschi4201 Жыл бұрын
da 1/y=1/6-1/x= (x-6)/6x segue y= 6x/(x-6), posto s:= x-6 segue il sistema: x= 6+s, y= 6 + 36/s s= 1, 2, 3, , 4, 12, 18, 36.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👍
@diegosimonetti7496
@diegosimonetti7496 Жыл бұрын
una soluzione dell' equazione potrebbe eddere x = - 2 e y = 3
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
no, x=2 e y=-3. Ma ce ne sono tante altre
@andbet71
@andbet71 Жыл бұрын
Io l'ho risolto con lo studio di funzioni: y= 6x/ (x-6)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👍
@mariapiapiro3718
@mariapiapiro3718 Жыл бұрын
Non mi è del tutto chiaro
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Mi dispiace
@stefanoiseppi9782
@stefanoiseppi9782 Жыл бұрын
y=Kx x=6(k+1)/k y=6(k+1) x e y diversi da 0
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
?
@ikarugaxx3749
@ikarugaxx3749 Жыл бұрын
Ma lei, proprietario di questo canale, è stato un Normalista?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
No. Scelgo questi problemi perché mi piacciono molto e, a quanto pare, suscitano molto interesse.
@parsecgilly1495
@parsecgilly1495 Жыл бұрын
Caro Gaetano, bellissimo video, le propongo la mia soluzione che fa uso di una parametrizazione dell'equazione di partenza: data l'equazione di partenza: 1/x + 1/y = 1/6 , con passaggi analoghi a quelli da lei illustrati, posso esplicitare rispetto a x, ottenedo: x = 6y/(y-6) a questo punto introduco un parametro intero "t" che "esplora" l'intero insieme N, per cui, ponendo la y in funzione del parametro intero "t" scriverò: y = 2t +6 , fatto ciò, la x per quanto ricavato sopra, omettendo i passaggi, potrà essere scritta così: x = 6 + 18/t abbiamo quindi le due relazioni parametriche: y = 2t +6 x = 6 + 18/t per definizione, t è intero, quindi la prima delle due produce y sempre intere, per quanto riguarda la seconda relazione, invece, x sarà intera quando t è un divisore intero di 18, cioè quando t, assume i valori: t= 1, 2, 3, 6, 9, 18, a sua volta, t, non può superare il valore 18, in quanto, genereremmo sempre un valore frazionario di x. Quindi ci siamo assicurati anche l'interezza di x; a questo punto, possiamo costruire la seguente tabella: t = 1, 2, 3, 6, 9, 18 (x,y) = (24,8), (15,10), (12,12), (9,18), (8,24), (7,42)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Assolutamente corretta! 👏
@18feb2013
@18feb2013 Жыл бұрын
Mi ci è voluto un po' per capire perché porre y = 2t + 6. Perché uno tra x e y è sicuramente pari e in ogni caso sia x che y sono maggiori di 6, giusto? Complimenti!!! Bella soluzione!
@parsecgilly1495
@parsecgilly1495 Жыл бұрын
@@18feb2013 buongiorno Carla, l'aver posto y = 2t +6 è una "manovra" che, mi serviva per "ripulire " il più possibile il denominatore che esprime la x; infatti, nella terza riga io avevo ottenuto, risolvendo rispetto a x: x= 6y/(y-6) , ebbene, quel denominatore che contiene "y-6" era proprio fastidioso e non consentiva di costruire degli x interi, per cui, ho pensato di costruire una parametrizzazione ad hoc per la y (cioè, y=2t+6), la quale mi assicura ovviamente l'interezza degli "y", ma, in secondo luogo "addomestica" il denominatore di x = 6y/(y-6)
@18feb2013
@18feb2013 Жыл бұрын
@@parsecgilly1495 Ti ringrazio molto per la risposta, però penso che operativamente una parametrizzazione arbitraria di y non sia corretta. Mi spiego: ai fini di addomesticare l'espressione di x, a pari diritto si sarebbe potuto porre y= 3t + 6, o y = 6t + 6, fino a y=30t + 6, però in ciascuno di questi casi (al contrario dei due casi in cui si ponga y = t + 6 e y = 2t +6) si limiterebbe il numero di soluzioni, e quindi di coppie, che si possono ottenere. Per esempio, nel secondo caso, x = 6y/(y - 6) = 6 + 6/t, che è soddisfatta solo da t = 1, 2, 3. Quindi, volendo generalizzare, se al posto di 6 ci fosse un intero "a" qualsiasi, per includere tutte le soluzioni possibili, l'unica parametrizzazione valida in tutti i casi sarebbe y = t + a, e non t = mt + a, dove m è un sottomultiplo di a^2 , mentre, se "a" è pari, è possibile anche porre y = 2t + a, senza incorrere nel rischio di limitare le soluzioni possibili.
@parsecgilly1495
@parsecgilly1495 Жыл бұрын
@@18feb2013 hai perfettamente ragione, adesso non ricordo bene, però credo, quando ho "inventato" la sostituzione y = 2t +6 di aver sentito nella mia testa balenare la scintilla dell'illuminazione ed ero troppo contento per aver trovato questa soluzione, diciamo che mi è andata...bene, il porre qualcosa di diverso non avrebbe prodotto lo stesso risultato...diciamo che ho avuto fortuna! ;)
Scuola Normale admission test, 1974
6:27
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 154 М.
Ammissione Scuola Normale 2007 - quesito 5
5:01
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 25 М.
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32
Wait… Maxim, did you just eat 8 BURGERS?!🍔😳| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 9 МЛН
How Strong is Tin Foil? 💪
00:25
Brianna
Рет қаралды 66 МЛН
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 58 МЛН
Ammissione Scuola Normale 1972 - quesito 5
6:35
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 15 М.
Calcolo della derivata: un trucco che non si insegna a scuola
10:09
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 19 М.
Verifica di limite - Limite infinito per x che tende a un valore finito
9:39
Eugenia Mattei - Matematica e Fisica
Рет қаралды 257
Lo strano caso della potenza con base 1
8:56
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 11 М.
Pochi trovano TUTTE le soluzioni!
9:51
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 7 М.
Un notevole problema sulle potenze
10:30
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 29 М.
Errori tipici sulle equazioni
9:04
Valerio Pattaro - Fisica Matematica Logica
Рет қаралды 355 М.
Math Olympiad 3^m-2^m=65 | Math Olympiad Problems | Algebra
10:49
OnlineMaths TV
Рет қаралды 2,6 МЛН
I Turned My Mom into Anxiety Mode! 😆💥 #prank #familyfun #funny
00:32