Scuola Normale admission test, 1974

  Рет қаралды 154,580

Gaetano Di Caprio - Invito alla Matematica

Gaetano Di Caprio - Invito alla Matematica

Күн бұрын

Пікірлер: 173
@carlospada2605
@carlospada2605 Жыл бұрын
Buonasera. Ho aperto per svista: pensavo fosse un video di Pattaro. Me lo voglio riguardare, per questo mi sono iscritto. Ritengo che questi brevi video siano di aiuto a dipanare i piccoli dubbi o a capire meglio ciò che si studia. Personalmente ho riscoperto la matematica dopo aver ritrovato la mia prof del Nautico.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👍
@mariocasettari
@mariocasettari Жыл бұрын
sfiziosissimo, grazie e potrò seguirti in altri video riconciliandomi con una materia un po' trascurata dopo la pensione, avendola insegnata alle scuole medie . . . . . saluti
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie a te!
@gabber7049
@gabber7049 Жыл бұрын
Molto piacevoli questi quesiti. Sto seguendo il canale da poche settimane, solo non capisco perché i commenti siano così pieni di strafottenti. Complimenti per le scelte delle citazioni, fanno anch'esse piacere.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie mille! Per quanto riguarda i commenti ce ne sono moltissimi interessanti (bicchiere mezzo pieno 😉)
@salvatorepuglisi5459
@salvatorepuglisi5459 Жыл бұрын
Complimenti per la chiarezza dell'esposizione. Grazie ♥️
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie!
@marcovicari953
@marcovicari953 Жыл бұрын
Dimostrazione molto chiara, complimenti.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@thisisnotanhandle
@thisisnotanhandle Жыл бұрын
Complimenti, ben realizzato, ottima qualità audio, tono di voce adeguato. Mi iscrivo subito al suo canale.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie mille!
@ikarugaxx3749
@ikarugaxx3749 Жыл бұрын
La cosa deprimente per chi, come me, «non è versato» è che si può seguire con piacere e comprendere qualunque spiegazione di teoria o risoluzione di problema, e comunque, di fronte a un nuovo problema da affrontare da soli, rimanersene imbambolati come pesci lessi senza saper che fare. Pian piano si impara a farsene una ragione.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Non se ne faccia una ragione, non demorda.
@laurachiar6086
@laurachiar6086 Жыл бұрын
Beh, non è il solo! Glielo assicuro! Quanto mi sarebbe piaciuto imparare la matematica a dei livelli intermedi, quanto meno!
@gianlucamega6032
@gianlucamega6032 Жыл бұрын
secondo me invece é proprio lì il "talento" matematico: nell'avere innanzitutto pazienza! Carta, penna, e pazienza ;)
@Taxi1729
@Taxi1729 Жыл бұрын
Molto interessante. Grazie
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@filippocecchi3042
@filippocecchi3042 Жыл бұрын
Grazie mille per il video! Mi ha fatto realmente capire perché non mi sono mai iscritto alla scuola Normale!!
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
🤔
@giuliofalco9816
@giuliofalco9816 Жыл бұрын
Bellissimo problema e grande e chiarissima la dimostrazione. Ero riuscito ad arrivarci ma in modo più confuso e non so se completamente corretto. partendo dall'assunto che x < y < z e che x=1 y=2 z=3 è una soluzione, una qualunque altra dovrà avere uno dei valori diverso. Supponiamo sia z ma non credo si perda in generalità scegliendone un altro . Lo aumento del minimo possibile ossia 1. diventa x + y + z + 1 = xy(z +1) so che la soluzione originale da 6 quindi la parte sinistra varrebbe 7 la parte destra diventa 7 + xy assurdo. aumentando di qualunque quantità si ottiene la stessa equazione assurda, poiché i numeri sono interi positivi
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì è "quasi" perfetta, andrebbe raffinata un po', perché dopo aver supposto x
@nameless1713
@nameless1713 Жыл бұрын
Dimostrazione alternativa: 1) La terna di numeri distinti (1, 2, 3) funziona. 2) Incrementando o decrementando di un'unità un numero qualsiasi di una terna x, y, z, la relativa somma cambia allo stesso modo, invece il suo prodotto cambia almeno di xy, xz oppure yz. Queste quantità sono sempre >= 2, altrimenti la somma non sarebbe uguale al prodotto, contraddicendo l'assunto (se fosse 1, allora -> (1x1)n = 1+1+n, il che è impossibile). Quindi, questa operazione rende sempre falsa l'equazione. 3) Dalla terna (1, 2, 3) possiamo generare tutte le altre con la medesima operazione, che sappaimo già generare false equivalenze P.S. Dimenticavo di aggiungere che questo ragionamento è direttamente estendibile ad equazioni ad N variabili
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Lo schema di ragionamento è corretto ma il punto 2 andrebbe dettagliato meglio, occorre fare attenzione al caso del decremento e al segno di ciò che si ottiene. Diciamo che ci sono un po' di ipotesi da esplicitare
@andreabianchini53
@andreabianchini53 Жыл бұрын
Una domanda riguardo il punto due della tua dimostrazione, è corretto dire che, siccome aumentando/diminuendo di 1 il generico elemento della terna il prodotto aumenta/diminuisce del prodotto degli altri due (detti y,z), l'unico modo per soddisfare l'uguaglianza 1 = yz ==> y=1 et z=1 (per ipotesi di numeri interi). Quindi tutte e sole le terne per le quali l'uguaglianza è verificata anche aumentando/diminuendo un termine di un'unità sarebbero del tipo (x,1,1). Ma per esse si ha che x+2 = x, il che contrasta l'ipotesi iniziale. Sbaglio?
@nameless1713
@nameless1713 Жыл бұрын
@@andreabianchini53 Esatto, questo è il punto cruciale
@ciaolucio
@ciaolucio Жыл бұрын
Bravissimo.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@tiromancino_tt
@tiromancino_tt Жыл бұрын
elegante ed essenziale
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie, i due aggettivi che ha usato sono per me lusinghieri, perché rappresentano esattamente ciò che mi guida nell'esposizione. Grazie davvero.
@marcofici2625
@marcofici2625 Жыл бұрын
Che soluzione elegante. Io personalmente ho provato (con successo ma con molti più passaggi) a lavorare riscrivendo le equazioni con x=n; x=n+a; x=n+b ottenendo pertanto xyz= n(a+n)(b+n)=n3+(a+b)n2+abn e x+y+z=n+a+n+b+n=3n+a+b; da cui n3+(a+b)n2+abn=3n+a+b; ho poi discusso questa equazione per n=1 e ricavato che ab=2 con a=1 e b=2 (il che già in parte risponde alla prima parte del quesito) e per n>1, per cui si può facilmente dimostrare (mediante una comparazione addendo per addendo dei due membri delle equazioni così scritte n3+(a+b)n2+abn=3n+(a+b)+0) che, in questo caso, il primo membro è sempre maggiore e non uguale al secondo.... (infatti n3>3n per valori interi positivi maggiori di 1: n3
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì, se guardi nei commenti anche altri hanno usato cambi di variabile simili a quelli che proponi, è una strada possibile ma non particolarmente agevole. Per quanto riguarda l'ultima domanda, effettivamente in questo modo si va direttamente alla soluzione senza prima dimostrare che i tre numeri sono distinti. Grazie del contributo!
@toro5338
@toro5338 Жыл бұрын
Buongiorno! Mi ricordo (ho 70 anni) di queste equazioni quando frequentavo il ginnasio. SINCERAMENTE... durante tutta la vita a seguire (i restanti 55 anni)... NON mi sono MAI tornate utili !... MAI ! Constatazione meramente personale: Ho lavorato con soddisfazione mia e dei ranghi superiori, nell'Areonautica, per 40 anni e oggi, pensando a tutti i *lavoratori attivi con e (purtroppo) senza posto di lavoro* ... mi chiedo a quante persone possa servire e sia servito conoscere la soluzione/spiegazione di codesta equazione! La butto li... 1 su 1000 ? Forse meno! Post ribelle il mio ?... probabile, ma molto, anzi estremamente realistico! Saluti e tanta salute a tutti 💚
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Difficilmente ha affrontato un' equazione di questo tipo al ginnasio, forse di altro tipo sì. Trovo abbastanza singolare che chi ha fatto un percorso di tipo liceale abbia a cuore "segnalare" che la matematica non serve a nulla e invece taccia riguardo al latino al greco alla storia alla filosofia... Grazie per il suo post, mi dà l'occasione per ribadire che la matematica è innanzitutto parte della cultura universale e che chi pensa che non serva allora vuol dire che pensa che la cultura e la scuola non servano. Spero proprio che ci siano ben poche persone che sono d'accordo con lei, senza la cultura la civiltà semplicemente muore. Auguri
@toro5338
@toro5338 Жыл бұрын
@@GaetanoDiCaprio Salve Gaetano! In effetti non ho percorso tutto l'iter "ginnasiale". Come si suol dire ho "abbandonato"... al 3° anno, perché sentivo che non avrei avuto ciò che nella vita cercavo. Come lavoro intendo. Cmq, la mia scelta si rivelò appagante. Un altro "ostacolo", mi permetta di chiamarlo così, fu il latino. Era di moda, sempre a quei tempi, asserire che esso avrebbe aiutato/facilitato l'apprendimento delle lingue straniere... a quei tempi!... Con i nuovi sistemi di apprendimento delle lingue straniere, il latino non è assolutamente indispensabile. Per il mio lavoro ho imparato a leggere e ad esprimermi fluentenente in inglese, in francese e me la cavo persino in tedesco... Ormai si sa, l' EU imperversa... Non se la prenda così, infatti ho specificato che fu una mia (personale) decisione/esperienza. E certo che la cultura serve !... stia bene !
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Non me la sono "presa", ci mancherebbe. Ognuno è libero di fare le sue scelte e di avere le sue opinioni. Ho solo colto l'occasione per esprimere la mia opinione al riguardo, in netta opposizione rispetto alla sua. P.S. ma l'ha guardato il video? Sia sincero...
@toro5338
@toro5338 Жыл бұрын
@@GaetanoDiCaprio salve nuovamente, i effetti ho visionato il vid fino a metà, poi ho perso interesse. Sempre nei miei ricordi... di soluzioni "dovevano" essercene una sola 😲 (filosofie di pensiero didattico, mah). Le racconto un aneddoto (poi non l'annoierò più), quando cambiai genere di scuola (base per la mecanica), mi ritrovai a dover risolvere problemi con le frazioni (un passo a ritroso per me...). Cosa facevo? Risolvevo i quesiti/problemi usando le equazioni, in modo più veloce e pulito. 😅🤣 per il docente (di quei tempi e di quel genere di scuola), pur trovando il risultato esatto... non me lo accettava... perché non usavo i suoi (sempre a quei tempi) metodi legati allo standard richiesto. Vabbé dai, ho poi intrapreso un periodo di apprendimento specifico (teoria + pratica) durato alcuni anni, raggiungendo il miglior punteggio degli esami di quell'annata. Passo e chiudo 🤗 Adiós 👋
@alessiodaini7907
@alessiodaini7907 Жыл бұрын
però qui si sarebbe dovuto chiedere che la terna non fosse nulla. Se la terna è nulla, allora sicuramente x,y,z possono essere valori non distinti fra loro. All'inizio avevo provato a dimostrare la seconda parte con i moduli, ma non c'è stato verso, allora ho usato i teoremi della disuguaglianza di Schwartz, ipotizzando che le terne fossero diverse fra loro quindi x
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Nel testo del problema c'è esplicitamente la richiesta che i valori siano interi POSITIVI
@alessiodaini7907
@alessiodaini7907 Жыл бұрын
@@GaetanoDiCaprio giusto, mi scordo che 0 non è considerato un numero intero in alcuni testi universitari, fra cui quelli matematici. Essendo studente di ingegneria informatica, mi viene da considerare 0 come positivo, perché il sistema del calcolatore fa così che 0 sia un numero positivo. Confondo le 2 cose. Immagino che l'equivalente nella sua testa sia "non negativo" l'insieme composto dall'unione dei numeri positivi e 0.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@alessiodaini7907 Lo zero è un numero intero in QUALSIASI testo dalle elementari all'università. Lo zero non è né negativo né positivo in qualsiasi testo dalle elementari all'università.
@alessiodaini7907
@alessiodaini7907 Жыл бұрын
@@GaetanoDiCaprio no, non è così. Non in tutti i sistemi gli zeri sono numeri senza segno. In matematica sicuramente, ma come già spiegato, nell'aritmetica del calcolatore non è così e mi sono confuso.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@alessiodaini7907 il fatto che un calcolatore possa associare allo zero un segno + (perché c'è la casella segno da riempire in qualche modo) non ha nulla a che vedere con il fatto che zero è positivo. Nessun calcolatore associa all'espressione 0>0 il valore TRUE. "Positivo" vuol dire "maggiore di zero"
@AndreaPancia1
@AndreaPancia1 Жыл бұрын
Fantastico
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie!
@mionome501
@mionome501 Жыл бұрын
Ottimo video
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@raulcardinali5435
@raulcardinali5435 Жыл бұрын
La prima parte si può dimostrare anche nel seguente modo : Posto x=y si ha 2x + z = x^2z ; esplicitando z si ha z = 2x/(x^2-1) ; Ora considero la funzione al numeratore f(x)=2x e la funzione al denominatore g(x)=x^2-1 e noto che (per x intero positivo) quando g(x) > f(x) si ha 0
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto bella, grazie! Io la scriverei così: prima di esplicitare z si verifica che per x=1 l'equazione è impossibile. Poi dopo aver esplicitato si osserva che per x=2 z non è intero e per x>2 il numeratore è minore del denominatore e quindi z non è intero. Grazie!
@andrea6x6x6
@andrea6x6x6 Жыл бұрын
MERAVIGLIA
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
😀
@panterbot828
@panterbot828 Жыл бұрын
video molto interessante
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@francescoabbruzzese170
@francescoabbruzzese170 Жыл бұрын
Non ci sta bisogno di dimostrare la prima parte. Si può sempre presupporre x≤y≤z, e quindi arrivare comunque a xy≤3 (ci becchiamo anche l uguale però). Da cui x=1, y € {1,2,3}. Sostituendo x nella equazione originale e risolvendo rispetto a z: z= y+1/y,-1, che elimina subito y =1. Sostituendo 2 ricaviamo z =3, e sostituendo 3 z = 2. Q.D.E.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì, infatti è stato il primo modo in cui lo avevo dimostrato ma poi ho voluto seguire il percorso suggerito da chi ha scritto il quesito
@ydhtkwIa
@ydhtkwIa Жыл бұрын
*Q.E.D.
@Chiavaccio
@Chiavaccio Жыл бұрын
Bel video👏
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie!
@Chiavaccio
@Chiavaccio Жыл бұрын
@@GaetanoDiCaprio 👍👍
@ernisstar2978
@ernisstar2978 Жыл бұрын
questo mi ha ricordato quando avevo 15 anni e si preparava per le olimpiadi matematiche... solo che quando si va al universita e si studia matematica o fisica, ci si rende conto che quello studiato a scuola e la parte diciamo settecentesca...proprio minuscola, e poi al universita il primo anno ti arriva a dosso una matematica molto diversa che nessuno ti aveva avisato... ecco il passagio e molto dramatico...e pocchi lo superano
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì è vero, è un passaggio "traumatico" ma anche fantastico! Si scopre che la vera matematica è infinitamente più bella di quella che si studia a scuola (o, almeno, per me è stato così)
@MarioTosti-fn4yv
@MarioTosti-fn4yv Жыл бұрын
Buongiorno. Grazie per questo sito molto interessante. Ecco la mia dimostrazione: Abbiamo dunque 1) a+b+c=abc con a,b,c interi positivi Definiamo le seguenti variabili ausiliarie: l=a-1 m=b-1 n=c-1 in cui ciascuna delle variabili l,m,n potrà essere nulla o un intero positivo questo ci permette di scrivere 2) a=l+1 b=m+1 c=n+1 La 1) si potrà riscrivere cosi': (l+1)+(m+1)+(n+1)=(l+1)(m+1)(n+1) Sviluppando si ha: l+m+n+3=l(m+1)(n+1)+(m+1)(n+1)= =lmn+lm+ln+l+mn+m+n+1 Semplificando si ha: 3=lmn+lm+ln+mn+1 Ossia: 3) lmn+lm+ln+mn=2 Affinché questa equazione sia soddisfatta è necessario, ma non sufficiente, che uno degli addendi sia nullo. Per soddifare questa condizione è necessario che una delle variabili sia nulla. Ma se si assume che una delle variabili sia nulla, tre addendi saranno altrettanto nulli. Per esempio, prendendo l=0 si avrà lmn=0 lm=0 ln=0. E la 3) si ridurrà alla forma mn=2. Per soddisfare quest'ultima equazione, si deve escludere l'ipotesi che una delle restanti variabili (m,n) sia anch'essa nulla. Né è ammissibile che m ed n siano uguali, perché il quadrato di un numero intero non puo' valere 2. Con cio' è dimostrato che le variabili l,m,n devono essere diverse tra loro. E per conseguenza diretta la stessa necessità varrà per a,b,c. Stabilito che una delle variabili deve essere nulla, per esempio l=0, il problema si ridurrà a trovare due interi m,n per cui mn=2. Si avrà 0
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto originale! Mi pare corretta
@papadinatabortolotti4148
@papadinatabortolotti4148 Жыл бұрын
Bello :)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Grazie
@tizioboh9927
@tizioboh9927 Жыл бұрын
Buonasera (o buongiorno). La mia soluzione iniziale (e istintiva) prevedeva di mettere a sistema tutte le possibilità di sostituzione della terna 1,2,3 a x, e z, ma mi sono reso conto che forse sarebbe troppo lungo e non porterebbe lontano. Attendo una sua risposta.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Spero abbia guardato il video. Francamente non capisco il senso di sostituire alle tre variabili tutte le permutazioni di 1,2,3. È ovvio che tutte le permutazioni soddisfano l'equazione
@DavideFinocchietti
@DavideFinocchietti Жыл бұрын
Stessa dimostrazione, se modificata lievemente, varrebbe sul dimostrare che le soluzioni intere NEGATIVE dell'equazione del video, siano rispettivamente -1,-2 e -3
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@luigifatigato8147
@luigifatigato8147 Жыл бұрын
Volevo proporre questo sketch di soluzione. Poniamo x=y-m-n, z=y+m. Il numero m positivo o nullo (nel caso in cui y =z, fatto che dovremo scartare), il numero n può essere anche negativo, e se è positivo deve essere tale da non rendere negativo x. Avremmo: 3y-n=y(y+m)(y-m-n) In particolare 3y-n deve essere divisibile per y+m. Perciò possiamo scrivere, con k intero, che esiste un k tale che n=(3-k)y-km. Qui la dimostrazione non si completa, c'è un claim da dimostrare, ovvero che k=3. Se y è diverso da -m, dividendo si ottiene 3=y(y+2m). da cui y=1, m=1 (perché l'unica scomposizione di 3 è 1×3) perciò otteniamo y=1, x=3, z=2. Se m=0 (cioè ci sono due soluzioni positive coincidenti, y=z) invece dobbiamo riesaminare l'equazione: 3y-n=y(y+m)(y-m-n) e avremo: 3y-n=y^2(y-n) in particolare 3y-n deve essere divisibile per y-n ovvero anche n deve essere 0, e verrebbe y^2=3 che non ha radici intere, oppure y=0 che abbiamo scartato. Perciò m non può essere nulla.
@luigifatigato8147
@luigifatigato8147 Жыл бұрын
In effetti poi le altre due soluzioni che la traccia scarta sono x=y=z=0 e x=y=z= sqrt(3)
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Accipicchia che fantasia! Credo che ci sia un passaggio errato quando concludi che n=-3m. Puoi solo concludere che esiste un k tale che n=(3-k)y-km
@luigifatigato8147
@luigifatigato8147 Жыл бұрын
Grazie del complimento. Non ci ho molto riflettuto sopra, per questo ho usato la parola "sketch" ...per sottoporre a verifica la dimostrazione. Vabbè devo controllare meglio, forse riesco a finire e...grazie nuovamente!
@luigifatigato8147
@luigifatigato8147 Жыл бұрын
Solo che se il k non è 3, n dipende da y. Devo un attimo rifletterci su.
@umegghju
@umegghju Жыл бұрын
Sketch => bozza, schizzo Scusate ma non ho resistito
@lucah0862
@lucah0862 Жыл бұрын
Sono sconcertato dal fatto che la risoluzione di questo problema sia richesta a dei ragazzi appena usciti dal liceo. Per niente semplice.
@Noe_
@Noe_ Жыл бұрын
A me la parte di risoluzione sembra abbastanza intuitiva. Penso la maggiore difficoltà sia fare le supposizioni. Con quale criterio si scelgono? perché diciamo che il primo sia minore del secondo è così via? Perché non il contrario ad esempio?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
La Scuola Normale è a numero chiuso e riservata ad allievi particolarmente dotati. Questo quesito è molto semplice rispetto ad altri quesiti della prova di ammissione
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Si può supporre qualsiasi ordinamento perché l'equazione è simmetrica rispetto alle tre variabili. Vuol dire che se scambio tra loro le variabili l'equazione non cambia. In altri termini se una certa terna è soluzione, lo saranno anche tutte le terne che si ottengono riordinando i valori in altro modo. In questo caso, dunque, le terne soluzione sono (1,2,3), (2,1,3), (2,3,1), (3,2,1), (3,1,2), (1,3,2). Tra tutte queste ci deve necessariamente essere quella in cui x
@Noe_
@Noe_ Жыл бұрын
@@GaetanoDiCaprio Grazie del chiarimento. Non ci avevo pensato!
@camporosso
@camporosso Жыл бұрын
Interessante. Tutto ciò mi conferma che non capirò mai assolutamente nulla di matematica.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ho già sentito affermazioni così categoriche: ha sicuramente avuto cattivi insegnanti
@rayrdan
@rayrdan Жыл бұрын
Mi fa innervosire che 10 anni fa avrei trovato la cosa banalr
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Capisco
@Glenn67345
@Glenn67345 Жыл бұрын
Ma se dimostro la seconda parte della domanda e basta, poi dopo non ho dimostrato anche la prima? A meno che non fosse una regola, fuori da quella domanda, una meta-regola, di rispondere alle parti nello stesso ordine ... Un altro conto è se alla fine l'unico modo è dimostrare proprio in quell'ordine (nel qual caso la domanda contiene in realtà un aiuto più che altro)... Ma la distinzione logica è sostanziale.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì, è possibile dimostrare direttamente la seconda parte, che ovviamente implica la prima. Chi ha scritto il quesito ha voluto suggerire un "percorso", che forse aveva lo scopo di semplificare la dimostrazione della seconda parte. Effettivamente dimostrare la seconda parte senza aver dimostrato la prima è leggermente più lungo (ma la differenza non è poi così sostanziale)
@davidedeciutiis
@davidedeciutiis Жыл бұрын
Buonasera. Vorrei sapere se secondo lei il seguente ragionamento per assurdo è accettabile (sicuramente non molto elegante) per dimostrare l'unicità della terna: assumo che la terna di interi positivi diversi tra loro (x,y,z) soddisfi l'equazione ma che, in ogni sua permutazione, sia diversa da (1,2,3) ed esplicito z=(x+y)/(xy-1); a questo punto il numeratore x+y non può mai essere 3,4 oppure 5, il denominatore xy-1 non può mai essere 1,2 oppure 5 e quindi z può essere un qualsiasi numero diverso da {3, 3/2, 3/5, 4, 2, 4/5, 5, 5/2, 1}. In conclusione esiste almeno una coppia (x,y), con x e y interi positivi ed entrambi diversi da 1,2 o 3, per cui l'equazione di partenza è soddisfatta ma z non è un intero positivo, il che contraddice l'ipotesi di partenza.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
L'idea è interessante ma non basta dimostrare che "esiste almeno" una terna con le proprietà che hai citato, dovresti dimostrare che "tutte" le terne di numeri positivi diversi da 1,2,3 non possono essere soluzione
@stefanoleandro4393
@stefanoleandro4393 Жыл бұрын
non conoscevo la funzione Delta/4
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
(b/2)^2-ac
@antoniomastinu4700
@antoniomastinu4700 Жыл бұрын
Esiste anche la terna -1,- 2 e -3!
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Il quesito richiede di trovare le terme formate da numeri interi POSITIVI. Certo sarebbe interessante risolvere il problema in generale su tutti gli interi. Allora si trovano immediatamente la terna 0,0,0 e la terna -1,-2,-3. Ma ce ne sono altre? Grazie per lo spunto!
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ci sono anche le infinite terne del tipo (0, -a, a) con a intero. Si dimostra che non ce ne sono altre. 😃
@-imtrottinox-rest5759
@-imtrottinox-rest5759 Жыл бұрын
Avrebbe senso studiare la quadrica associata all'equazione? Dividendo per x,y se posti diversi da 0 chiaramente
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Interessante, ma è un pensiero geometrico che (secondo me) in questo problema sui numeri interi non porta molto lontano
@carlospada2605
@carlospada2605 Жыл бұрын
Riguardando la dimostrazione (seconda parte), quando si arriva a xy < 3 posso affermare già che Z = 3, dato che abbiamo già dimostrato che sono 3 numeri interi e positivi e distinti x e y sono necessariamente 1 e 2, anche senza i passaggi successivi
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
🤔 non capisco, almeno un passaggio per quanto semplice è necessario, perché altrimenti z potrebbe tranquillamente essere uguale a 4 o a 5 o a qualsiasi altro numero maggiore
@pinkusbotzo2559
@pinkusbotzo2559 Жыл бұрын
Per la seconda parte a me verrebbe questa idea “bruta”: ordino le soluzioni da trovare in modo che x < y < z essendo tre soluzioni distinte, posso anche esplicitare y e z in funzione di incrementi di x: y = x + a z = x + b dove ovviamente a < b. L'equazione risolutiva, in forma letterale, diventa quindi x + (x + a) + (x + b) = x (x + a) (x + b) che è un polinomio di terzo grado in x, cioè x^3 + (a + b) x^2 + (ab - 3) x - (a + b) = 0 Applicando la regola di Ruffini, e costruendo la famosa tabella, cerco le soluzioni tra i dividendi del termine noto (a + b). Il primo tentativo è x = 1, e si ottiene conferma con la ab - 2 = 0 infatti, già si sa che x = 1 è una soluzione, e che a = 1 e b = 2 per avere y = 2 e z = 3, però è simpatico convincersene. Ora, conoscendo una radice del polinomio di terzo grado (x = 1), posso ridurre il polinomio da terzo a secondo grado, e trovare facilmente le altre due radici, che sono x2 = -1 e x3 = -3 Quindi, ricordando che x è il valore minore, e che gli incrementi sono a = 1 e b = 2, abbiamo le tre soluzioni che soddisfano la x + y + z = xyz x = 1 y = 2 z = 3 x = -1 y = 0 z = 1 x = -3 y = -2 z = -1 dalle quali si vede come solo la prima terna soddisfa il requisito di essere soluzioni distinte e positive. Interessante notare come, generalizzando la seconda, le soluzioni banali considerano x = -z ; y = 0 ; z = -x (qui somma e prodotto valgono sempre zero), mentre la terza non è altro che la prima con termini tutti negativi. L'idea “bruta” sviluppata mi spinge quindi a riassumere la dimostrazione considerando che, per avere somma e prodotti uguali, la simmetria del problema suggerisce che i tre numeri devono necessariamente avere y = 0 e x = -z, oppure le soluzioni negative uguali in valore assoluto a quelle positive x => -z ; y => -y ; z => -x. Alla fine ne resterà una sola. Mi sembra che quadri...
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ottimo, hai risolto il problema generalizzato, ossia trovare TUTTE le terne di interi (non soltanto interi positivi). Complimenti!
@domenico2474
@domenico2474 Жыл бұрын
bastava porre due progressioni una geometrica e la seconda aritmetica per vedere la soluzione, senza fare troppi passaggi. abc a+b+c con i primi tre numeri e verificare che con i successivi non si poteva fare usando magari fibonacci tribonacci ecc... sennò rimane una pura speculazione di passaggi algebrici.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Se tu avessi davvero voglia di condividere una soluzione alternativa, la scriveresti in modo comprensibile. Ci provi? Grazie
@domenico2474
@domenico2474 Жыл бұрын
@@GaetanoDiCaprio si poi te lo giro
@luigicorrias
@luigicorrias Жыл бұрын
Cosa vuole dire delta quarti?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
La quarta parte del delta. Può guardare il mio video kzbin.info/www/bejne/h6GWcp6oh7loptU per una risposta più dettagliata
@barbarabianchi1719
@barbarabianchi1719 Жыл бұрын
La matematica spiegata semplice.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
😃
@dehantonio
@dehantonio Жыл бұрын
Per la prima parte, provo a proporre una dimostrazione alternativa. Per assurdo, se le soluzioni non fossero distinte, si avrebbe x=y=z quindi otteniamo 3x=x^3 che ha come unica soluzione positiva x=3^(1/2) che non è intero. E' accettabile questa dimostrazione?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
No, è errata. Se x,y e z non sono distinte potrebbe essere che due sono uguali e la terza diversa.
@andreapedron568
@andreapedron568 Жыл бұрын
Lascio un'interpretazione geometrica di questo problema e voglio evidenziarne la connessione con un altro problema discusso in questo canale, cioè quello in cui si esamina la somma arctan(1)+arctan(2)+arctan(3)=180° del 7 ottobre 2022.. Fra le tangenti degli angoli A, B, C, di un triangolo sussiste la relazione tgA+tgB+tgC=tgAtgBtgC, la relazione si ottiene facilmente scrivendo tgC=tg(180-A-B)=-tg(A+B)=(tgA+tgB)/(1-tgAtgB) ed è ovviamente la stessa relazione x+y+z=xyz del problema. Osservazione 1. Il problema qui risolto equivale a chiedersi se esistono triangoli acutangoli i cui angoli hanno tutti tangente a valore intero, la risposta è che ne esiste uno solo, con angoli (A,B,C) pari ad (arctan(1),arctan(2),arctan(3)). Osservazione 2. L'equazione x+y+z=xyz potrebbe essere risolta anche con ragionamento geometrico facendo vedere che interi pari a 4 o più non possono essere soluzioni perché altrimenti esisterebbe un triangolo con angolo pari ad arctan(4) o maggiore e gli altri angoli con arctangente intera, esempio 1 o 2, ma quedto non è possibile perché la somma sarebbe superiore a 180° (bisognerebbe comunque dimostrare prima che il triangolo non può essere ne equilatero, che è immediato visto che la tangente di 60° non è intera, ne isoscele, per assicurare che x, y, z siano distinte) Osservazione 3. arctan(1)+arctan(2)+arctan(3)=180° è equivalente a dire che (arctan(1),arctan(2),arctan(3)) possono essere gli angoli (A,B,C) di un triangolo e questo è vero perché soddisfano a tgA+tgB+tgC=tgAtgBtgC 1+2+3=1×2×3 che è la condizione a cui devono soddisfare le tangenti, inoltre se ci chiediamo se esistono altri interi positivi (l,m,n) tali che arctan(l)+arctan(m)+arctan(n)=180°, la risposta è negativa, i valori (1,2,3) sono gli unici perché unica è la soluzione di x+y+z=xyz.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Fantastico! Posso chiederti se sei un insegnante o uno studente o altro? Grazie
@andreapedron568
@andreapedron568 Жыл бұрын
@@GaetanoDiCaprio Mi sono laureato in elettronica a Padova nel 1986, ma ho sempre coltivato la passione per la matematica.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@andreapedron568 Beh, direi che sei un matematico "mancato" (si fa per dire) 😉
@bingibingi56
@bingibingi56 Жыл бұрын
Buonasera, complimenti davvero per l'argomento interessante e la spiegazione chiara che rende il video molto piacevole. Mi sono davvero confuso nel momento in cui abbiamo dimostrato che l'unica terna possibile è 1 2 3: siamo arrivati alla conclusione che xy
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Non c'è nulla di arbitrato in quel 3. Se lanci 3 dadi la somma di quello che ottieni non potrà mai superare 3x6. Qui è un discorso analogo.
@davideburattini4509
@davideburattini4509 Жыл бұрын
Buongiorno, sbaglio dicendo che la seconda parte del problema poteva essere dimostrata per induzione?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Per induzione che 1,2,3 è l'unica terna? Francamente non saprei, istintivamente direi di no. Se riesci per induzione fammi sapere!
@davideburattini4509
@davideburattini4509 Жыл бұрын
Intendo questo, si sostituisce 1 2 3 e si verifica ovviamente l'identità, poi si procede a verificare se essendo valida per 1 2 3 è valida anche per i suoi numeri successivi n+1 sia nelle somme come nei prodotti abbiamo quindi 1+1 + 2+1 + 3+1 = (1+1)(2+1)(3+1), ovviamente no e quindi il passo induttivo non risulta verificato, mi corregga se sto dicendo delle sciocchezze
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@davideburattini4509 No, è errato. In questo modo dimostri solo che le terme di numeri consecutivi non sono soluzioni
@davideburattini4509
@davideburattini4509 Жыл бұрын
@@GaetanoDiCaprio ok la ringrazio
@miccapcapo8376
@miccapcapo8376 Жыл бұрын
Non ho capito il passaggio che porta da x+y+z
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
L'equazione stabilisce un'uguaglianza tra l'espressione x+y+z e l'espressione xyz, quindi sono intercambiabili
@genebo3154
@genebo3154 Жыл бұрын
francamente ci sono arrivato ma solo semplicemente pensando e provando con 1 2 e 3 senza pensare a nessuna dimostrazione. penso non sia un buon metodo....trovate?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Risolvere un'equazione non è trovare UNA soluzione, ma trovare TUTTE le soluzioni. In questa equazione la soluzione era già data, il quesito consisteva proprio nel dimostrare che non ce ne sono altre. Trovare una o più soluzioni per tentativi si può sempre fare, ma un'equazione è da considerare risolta solo quando si sono trovate tutte le soluzioni. Questo può essere garantito solo da una dimostrazione.
@francescosmerilli5384
@francescosmerilli5384 Жыл бұрын
x
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Infatti non l'ho dato affatto per scontato, forse ha guardato il video senza audio?
@francescosmerilli5384
@francescosmerilli5384 Жыл бұрын
@@GaetanoDiCaprio l'ho pure riascoltato, adesso lo riascolto, ma il punto in cui si suppone x
@francescosmerilli5384
@francescosmerilli5384 Жыл бұрын
@@GaetanoDiCaprio confermo, una volta dimostrata la prima parte si da per scontato (che per la mia scarsezza scontato non è affatto) che senza perdita di generalità x
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@francescosmerilli5384 certo, perché al primo punto dimostro che le soluzioni devono essere distinte senza usare alcuna ipotesi sull'ordinamento. Al secondo punto, visto che già so che le soluzioni sono distinte, uso le disuguaglianze strette perché il problema è simmetrico
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@francescosmerilli5384 Ripeto, scegliere un ordinamento piuttosto che un altro non fa nessuna differenza perché il problema è simmetrico rispetto a x,y,z. Nel video dici che il problema è simmetrico. A questo punto forse non ho capito la tua domanda/obiezione?
@filfil2733
@filfil2733 Жыл бұрын
Da ignorante chiedo: il tipo di problema richiama, non nella soluzione ma nel quesito stesso, P contro NP? Magari non c'entra niente quindi scusami già in partenza.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ti direi "non c'entra niente" ma se hai avuto questo pensiero ci sarà stato un motivo? 🤔
@angelavitaliano5200
@angelavitaliano5200 Жыл бұрын
Secondo il prof Enrico Bombieri questo esercizio si poteva fare in 5 minuti.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Sì certo, una volta capita la via da seguire
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
Forse a trovare la soluzione, anzi ci vogliono 5 secondi
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@giuseppemalaguti435 Forte! Prova allora a trovare la soluzione generale, con x,y,z interi (non soltanto positivi). Quanti secondi impieghi?
@parsecgilly1495
@parsecgilly1495 Жыл бұрын
io proporrei la seguente dimostrazione per assurdo: supponiamo, per assurdo, che oltre alla terna x,y,z=1,2,3, esistano altre soluzioni in N, che, senza ledere in generalità, possono assere costruite a partire dalla soluzione nota, cioè, ponendo: x,y,z=(1+a), (2+b), (3+c), con: 0
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Molto bello
@stefanodudine8653
@stefanodudine8653 Жыл бұрын
Alternativa: 1) x=z => x^2 y=2x+y => y=x(xy-2) => y è multiplo di x, q=y/x è intero x^2 y-y-2x=0 /x => x^2 q-q-2=0 => q(x^2-1)=2 => q=2 x^2=2 o q=1 x^2=3 2) Dimostro che xyz=x+y+z non ha soluzioni intere tutte > 1: z=(x+y)/(xy-1) e z>1 => x+y>xy-1 => x x=2 => 4z=4+z => z=4/3 y>2 => x
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👏
@gabrieledegruttola4649
@gabrieledegruttola4649 Жыл бұрын
Come complicare le cose che già a prima vista e con logica è risolvibile in 5 secondi.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Allora dedichi 5 secondi a descrivere la sua dimostrazione dell'unicità della soluzione. Ammesso che lei sappia cosa vuol dire dimostrare ovviamente. Attendo con trepidazione
@gabrieledegruttola4649
@gabrieledegruttola4649 Жыл бұрын
Di solito non replico,e non mi permetto di offendere la sua intelligenza, io non sono un matematico perciò non sono al suo livello,era solo un modo per dire che a volte l'intuito aiuta.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@gabrieledegruttola4649 Io invece sono sempre in attesa del suo ragionamento da 5 secondi, è quello che lei ha affermato di avere, avrebbe potuto arricchire tutti. Io cerco sempre di imparare, e la soluzione più semplice è sempre la migliore. Peccato che non voglia condividerla.
@gabrieledegruttola4649
@gabrieledegruttola4649 Жыл бұрын
Va bene ,semplicemente ho fatto a mente 1+2+3 =6 e poi 1x2x3=6 .
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@gabrieledegruttola4649 ottimo grazie. Spero sia chiaro che il nocciolo di questo problema non è trovare la soluzione ma dimostrare che non ce ne sono altre. Le assicuro che non è una "complicazione", è l'unica parte interessante di questo problema.
@mariapiapiro3718
@mariapiapiro3718 Жыл бұрын
Interessante
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
👍
@alessandrapeluzzi3651
@alessandrapeluzzi3651 Жыл бұрын
prima di vedere mi lancio con 1 + 0,1 + 0,01 hehe
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Guarda il video, grazie
@paramatematico198
@paramatematico198 Жыл бұрын
Io non ho capito perché x+y+z
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Dato che x e y sono entrambi minori di z, la loro somma è minore di z+z, ossia x+y
@CercateRogneCheLeTrovate
@CercateRogneCheLeTrovate Жыл бұрын
Entrano in pochi alla Normale
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
È a numero chiuso, sì.
@dinochiari3647
@dinochiari3647 Жыл бұрын
Invece in questo caso x+y=xy Si deduce che x ed y siano pari a 2. Quindi con x=y=2 ottengo 2+2=2×2 Entrambi fanno 4. Con numeri diversi da 2 non funziona. Se x=y=1 1+1>1×1→2>1 Se x=y=3 3+3
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Ho capito bene, stai considerando un altro problema? Cioè quello di trovare le soluzioni intere di x+y=xy?
@dinochiari3647
@dinochiari3647 Жыл бұрын
@@GaetanoDiCaprio certo
@fabiomassimo9273
@fabiomassimo9273 Жыл бұрын
Scommetto che non e' stato ammesso nessuno
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Non credo proprio!!! Questo quesito è molto semplice rispetto alla difficoltà media dei quesiti del test di ammissione alla Normale.
@fabioflorio6922
@fabioflorio6922 Жыл бұрын
@@GaetanoDiCaprio Solo per curiosità, ammissione per quale indirizzo e/o corso di laurea?
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
@@fabioflorio6922 Matematica/Fisica/Informatica
@davideverga2526
@davideverga2526 Жыл бұрын
x=1; y=2; z=3
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Adesso guarda il video, grazie
@lowlifeuk999
@lowlifeuk999 Жыл бұрын
ma in realtà dimostrando la seconda, si dimostra anche la prima.
@GaetanoDiCaprio
@GaetanoDiCaprio Жыл бұрын
Certo! Ma questo vale solo se quando dimostri la seconda NON usi il risultato della prima.
Ammissione Scuola Normale 1977 - quesito 5
6:08
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 147 М.
Scuola Normale admission test, 2016
8:01
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 26 М.
БУ, ИСПУГАЛСЯ?? #shorts
00:22
Паша Осадчий
Рет қаралды 2 МЛН
ЛУЧШИЙ ФОКУС + секрет! #shorts
00:12
Роман Magic
Рет қаралды 31 МЛН
小丑揭穿坏人的阴谋 #小丑 #天使 #shorts
00:35
好人小丑
Рет қаралды 49 МЛН
Pi is the ratio of two inexistent quantitities
7:20
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 37 М.
Ammissione Scuola Normale 1972 - quesito 5
6:35
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 15 М.
Che altezza raggiunge il livello dell'acqua?
13:15
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 7 М.
Un notevole problema sulle potenze
10:30
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 29 М.
Cosa sono le derivate (capiamolo veramente!)
21:13
Valerio Pattaro - Fisica Matematica Logica
Рет қаралды 311 М.
Gara internazionale Bocconi 2019 -  Quesito 18
10:29
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 29 М.
Hardest Exam Question | Only 8% of students got this math question correct
11:28
Un radicale mostruoso
6:33
Gaetano Di Caprio - Invito alla Matematica
Рет қаралды 4,5 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 58 М.