You could easily find the first integral by using the fact that tan(x)=sin(x)/cos(x) and therefore showing that ln(tan(x))=ln(sin(x))-ln(cos(x)) Because of the nature of the integral the could cancel out.
@avdrago71705 жыл бұрын
Before watching, I’m guessing the answer is 0 because you turn it into ln(sinx)-ln(cosx) and with the usub of u=pi/2-x the 2 integrals are equal so the whole integral is 0.
@holyshit9225 жыл бұрын
I calculated it in mind also before watching and in the same way as you had done it
@nournote5 жыл бұрын
2:55 even if I is infinity [...] we still have I=0 How is that possible?
@drpeyam5 жыл бұрын
The point is that I can’t be infinity. At the beginning there might be a possibility that the integral diverges, but I’m ruling that out
@nournote5 жыл бұрын
@@drpeyam I get your point. I am still wondering if that is enough to justify the existence of such integral. I would calculate the integral from alpha to pi/2-alpha, which would be 0. Then take the limit. Even proceeding likewise I am not totally sure that is rigorous enough.
@fabiotiburzi5 жыл бұрын
exponential is like god, their ways diverge from our ways
@nournote5 жыл бұрын
@@angelmendez-rivera351 Why not (your 1st comment)? I meant from ALPHA to PI/2 - ALPHA, not from 0.
@nournote5 жыл бұрын
@@CHector1997 thanks for sharing
@connorshea90855 жыл бұрын
Is it possible to find the integral from 0 to pi/4, to avoid things cancelling out?
@fanyfan74665 жыл бұрын
Connor Shea it is actually and the solution is very elegant, especially if you know what Catalan’s Constant is
@factsheet49305 жыл бұрын
Wolfram glitches and adds a small real number in the solution of the integral from 0 to Pi 🤔
@fNktn5 жыл бұрын
That's probably due to rounding errors, as any approximation (and wolfram alpha has to use approximations) is only accurate to some degree and if you then have to also convert your calculations from binary to decimal these small deviations can happen
@alannrosas25435 жыл бұрын
Brilliant solution!
@newtonnewtonnewton15875 жыл бұрын
U r wonderful D peyam السلام عليكم
@sergioh55155 жыл бұрын
Can u do it using riemann definition?
@sergioh55155 жыл бұрын
@@angelmendez-rivera351 but it converged? It just wasnt in the set of R
@sergioh55155 жыл бұрын
@@angelmendez-rivera351 for the bonus one I mean
@ΦοιβοςΒασαλιος5 жыл бұрын
If this integral is 0,then the area of the function ln((tanx)) between 0 and pi/2 is 0 is this fact makes a contradiction with the graph itself ;
@healthandfitnessglobal98383 жыл бұрын
Brilliant you are
@romualdaszapolskasromualda42495 жыл бұрын
Very good
@999bigsmoke5 жыл бұрын
Cool!
@fabiotiburzi5 жыл бұрын
3:06 WTF? 3:19 ah, ok, let's go
@sea341015 жыл бұрын
I don't like the second part of the video. Over [pi/2,pi] tan(x) is negative, so calculating ln(tan(x)) doesn't really make sense. Using that "main branch" without any proper explanation looks like a magical trick to me.