I feel so honored :) ... Hello to everyone and warm greetings from Belgium 😀😀😀
@chirayu_jain5 жыл бұрын
Hi Lars 👋😃
@LS-Moto5 жыл бұрын
@@chirayu_jain Hey... ✌😄
@blackpenredpen5 жыл бұрын
Here’s the man!
@LS-Moto5 жыл бұрын
@@blackpenredpen 😀
@Cat-yz1tk5 жыл бұрын
hey lars hope you are doing well
@blackpenredpen5 жыл бұрын
U, w, v
@chirayu_jain5 жыл бұрын
And x 😉
@ayonbarua89495 жыл бұрын
Bro why are you so cool? Pls ans.
@ayoobbhat91805 жыл бұрын
Ur Amazing bro From KASHMIR
@andreiplesa15185 жыл бұрын
how about this calculus with this formula (in degrees) limit for x approach for x pi=x\2*sin (360\(x+2)) \ sin((x\4)*(360\(x+2))) I want to know how approach you can get even with a calculator (I tried this formula and works as much as you dont round the numbers (less the calculator to do)) and approach as much as bigger as x is (I sugggest to began aproach with x= 100 to get first digit 3 and for second you need x= apraxch 1000 so almost 10 to the power of 3 plus number of digit you want (for smaller values of diggits ) gets the most approach you can get by hand and calculator
@mokouf35 жыл бұрын
And if I'm the one doing this, I will not use w and v, instead writing down the algebraic twin Something like: d(u-sqrt(2)/u), d(u+sqrt(2)/u)
@meedonexus5 жыл бұрын
I got A+ in calculus 21 years ago Integration was my favorite game but after these years I totally lost my skill I love math more than any other science but unfortunately I left studying it to have better job in engineering to gain more money Math is the science that all inventions based on it Love math
@annevanderbijl35103 жыл бұрын
cool story :)
@samirelzein19783 жыл бұрын
i found them back in my job :))
@aashsyed12773 жыл бұрын
@@annevanderbijl3510 hello
@annevanderbijl35103 жыл бұрын
@@aashsyed1277 hahahh hi ive seen you many times before
@aashsyed12773 жыл бұрын
@@annevanderbijl3510 :0
@VibingMath5 жыл бұрын
What a show man! And also big congrats to Lars for his winning the cancer finally! You two are awesome integral-fighter and cancer-fighter respectively 😎
@blackpenredpen5 жыл бұрын
Thank you!!! Yay!! We are all happy!
@aashsyed12773 жыл бұрын
@@blackpenredpen & you are so awesome!!!!!!!
@abhinavbhutada9b4842 жыл бұрын
Dabloo?
@aLumpOfParticles5 жыл бұрын
when you changed the W to the X you wrote + instead of - btw check the answer via derivative :D
5 жыл бұрын
Came here just to say that hahahah
@RoyEduworks5 жыл бұрын
kzbin.info/www/bejne/lYPagn99jtpor80
@solidwaterslayer5 жыл бұрын
16 minute int just to fuk up at the end lol
@nite59632 жыл бұрын
Nearly as painful as if he’d have forgotten the + C
@ayoubachak015 жыл бұрын
there is a misstake sir !!! when you were substituting u in the w expression you puted a (+) insted of a (-) I love your work
@GayAnnabeth5 жыл бұрын
now prove this by differentiating
@justabunga15 жыл бұрын
The 379th Hero you can split into products as tan^2(x)*tan(x)=(sec^2(x)-1)tan(x)=tan(x)sec^2(x)-tan(x). The integral will come out to be (tan(x))^2/2+ln(abs(cos(x)))+C. You might end up the answer in terms of secant as (sec(x))^2/2-ln(abs(sec(x)))+C since it end up a different constant and using properties of logarithms.
@RoyEduworks5 жыл бұрын
kzbin.info/www/bejne/lYPagn99jtpor80
@subhadeepsarkar56065 жыл бұрын
Justin Lee lol
@alhassanelkossei84815 жыл бұрын
Please check the answer by differentiation.
@tomatrix75254 жыл бұрын
Those who are womdering why he used hyperbolic cot instead of hyperbolic tan, it is because with tan there is a limitation, namely |x| 1 so that limitation works here
@seb538_5 жыл бұрын
Do the proof that sqrt(2) is irrational in under sqrt(2) minutes!
@RoyEduworks5 жыл бұрын
kzbin.info/www/bejne/lYPagn99jtpor80
@bharatipatel50765 жыл бұрын
Can be done in 2 mins
@mokouf35 жыл бұрын
@@bharatipatel5076 He means "square root of 2" minutes, shorter than 2 minutes.
@chhromms.81383 жыл бұрын
@@bharatipatel5076 it's about 84,85 seconds
@ernestschoenmakers81813 жыл бұрын
The other method is partial fraction decomposition where you divide u^4-2u^2+2 by u^2-au+b. After working this out you'll get: a=sqrt(2+2sqrt(2)) and b=sqrt(2).
@blackpenredpen5 жыл бұрын
Did you pause & try? Also, check out my 100 integrals where I first mentioned Lars. kzbin.info/www/bejne/mpjQZWBpYq6padU
@supriyajyoti225 жыл бұрын
Math tricks for any competition plz....
@healthygamer81925 жыл бұрын
I don't understand how you keep so motivated doing math.
@user-wu8yq1rb9t3 жыл бұрын
I love the hidden symmetry in this integral! Great ... I just enjoyed. Thank you so much ❣️
@masonholcombe33275 жыл бұрын
when you went from u to x when integrating, you did + instead of - for u! all good though, nice job!!:)
@maskedman83685 жыл бұрын
youtube must encourage these typeof educative channels
@QuantumHistorian3 жыл бұрын
Way easier to start off with the substitution 1 + tan(x) = cos^2(u) and then do some simple trig until you can integrate by partial fraction. Gives a MUCH nicer answers too: 1/sqrt(2) ln[sqrt(2) + sqrt(1+tan(x)) / sqrt(2) - sqrt(1+tan(x))] + c
@leponpon69355 жыл бұрын
Keep making more of these amazing videos! The world needs more of this!
@AmooBaktash5 жыл бұрын
A sign error happened at 16:34! Note that w = u - sqrt(2)/u.
@edusoto914 жыл бұрын
The polynomial P = u^4 + 2 u^2 + 2 factors over the reals (the only irreducible polynomials over R are linear or quadratic with negative discriminant). Here is a factorization P = (x^2 - a x + b) ( x^2 +a x + b) where a = sqrt(2sqrt 2 + 2) and b = sqrt 2 Once you compute this, the integral is straightforward.
@ernestschoenmakers81814 жыл бұрын
Yeah i did it this way, doing a long division by using u^2-au+b as the division factor.
@rashmigupta62274 жыл бұрын
Your change of face expression at 2:41 😂😂
@JulesvanPhil5 жыл бұрын
Very nice video :-) But you did a mistake in the last line: when resubstituting the w you wrote a plus instead of a minus :D
@itsviv12 жыл бұрын
Thanks very much. I was stuck in integration of similar kind, and your videos did provide me with a solution.
@genocider58683 жыл бұрын
This is such a big brain math play to make two integrals this way
@nchoosekmath5 жыл бұрын
Wow, this one does not even involve special function in the answer. But the steps were really long. Nice video!
@leonardocampigli83205 жыл бұрын
Noticed that too
@Mernusify5 жыл бұрын
You could also write the answer with tanh^(-1). The differentiation for this is MONSTROUS (and fairly tedious), but it's doable.
@Reallycoolguy13692 жыл бұрын
I agree, I thought the choice between tanh^(-1) and coth^(-1) was based on the domain and since it's an indefinite integreal it's arbitrary. And maybe (1/2)ln|(1+x)/(1-x)| would be best since its domain includes all real numbers except +/- 1. It's not as fun as the inverse hyperbolic functions though
@faizahmed79075 жыл бұрын
7:37 Who else remembered Arthur??
@rubikscuber11145 жыл бұрын
U r a cool teacher🤟👍 Greetings from India
@3420undertaker5 жыл бұрын
Do it for Lars!
@blackpenredpen5 жыл бұрын
That would be a cool harshtag! #doitforLars
@pablorestrepodiaz85205 жыл бұрын
Please check the answer by diferentietion :)
@martincurley81075 жыл бұрын
Hi BlackPenRedPen! Didn't know if you noticed that in the inverse tan of your answer you switched plus for minus the answer should have been: 1/sqrt(2sqrt(2)-2)*arctan([1/sqrt(2sqrt(2)-2)](sqrt(1+tanx)-2/sqrt(1+tanx)))-1/sqrt(2sqrt(2)-2)*arctanh([1/sqrt(2sqrt(2)-2)](sqrt(1+tanx)+2/sqrt(1+tanx)))+C. But that was an awesome job. Integrals can be tricky, but you do an amazing job.
@avdylkrasniqi46875 жыл бұрын
14:03 should be minus. Much respect for you!
@herlysqr16505 жыл бұрын
Imagine fail just for that.
@ansper19054 жыл бұрын
13:20 can't we do the second integral using partial fractions?
@egillandersson17805 жыл бұрын
I did not find it. This was a very difficult one ! I prefer your aswer to that of wolframalpha, which goes needlessly to the complex world.
@abhishekchakraborty23165 жыл бұрын
I didn't see that the video was 16 mins long and i thought this seems like an easy integral. Three mins into my attempt and i realized this integral is out of my league. So i watched the whole video. I am fascinated by the simplicity with which you explained everything.
@mehmeteminconkar2590 Жыл бұрын
Proce by differentiation def of derivative and epsilon delta
@arpwable5 жыл бұрын
Why did you choose coth^-1 rather than tanh^-1? Both can be differentiated to the form you need, right?
@chetansanap33985 жыл бұрын
Plz solve integral of sin theta^2
@justabunga15 жыл бұрын
It’s hard to tell without the use of parentheses. If you meant the integral of sin(x^2), then it’s non-elementary but will come out as the answer of the sine Fresnel integral as S(x)+C. If you meant the other way as the integral of (sin(x))^2, then you have to change the identity as (1-cos(2x))/2. Doing so will get the answer to be x/2-sin(2x)/4+C.
Niraj Roy :Motivational and Teacher you’re doing the infinite nested square root derivative. He already did that in the video to show work.
@chetansanap33985 жыл бұрын
@@RoyEduworks isko Hindi kaise smjega
@chetansanap33985 жыл бұрын
@@justabunga1 yeah,my doubt was first case sin(x^2),got it
@isaacmedina9962 Жыл бұрын
what an insane integral!!!!
@qu2k4585 жыл бұрын
from South Africa! Hugs fan of yours! hope to be as profiecient as you are someday! much love.
@larissa82324 жыл бұрын
I love how you go and just say "pause the video and try this first :)"
@larissa82324 жыл бұрын
have to say that i felt a little emotional at the beginning of the video, I'm also an engineer student and fighted cancer exactly 3 months ago, everything is fine now but anyways I'm in quarantine watching Big Integrals playlist AGAIN hah it's just sooo good. Cheers to Lars
@egohicsum3 жыл бұрын
easy peasy lemon sqeezy for that one. holy moly
@maskgamings192 жыл бұрын
imagine in a test, this question comes and you forgot to write the C at the end.🙂
@heldertvillegasjaramillo63435 жыл бұрын
I did tried using integración by parts multiple times and some regular substitution in the middle, i got to a point were i had de integral of sqrt(tanθ), that's when i stopped because i know that isn't pretty (or is way too pretty, depending on how messed up you are).
@siddharthamondal43463 жыл бұрын
let 1+tanx = u^2 sec^2xdx = 2udu so the original integral becomes (u.2udu)/(1+u^2) then simplifying it we get 2du - 2du/(1+u^2) so we get 2u-2tan^-1(u) 2*(sqrt(1+tanx)) - 2*tan^-1(sqrt(1+tanx)) Won't this be easier? Or am I wrong somewhere?
@backyard2825 жыл бұрын
Hey bprp, I checked your apparel, why doesn't your "for every ϵ > 0" t shirt have the rest of the limit definition on the back side? thanks :)
@blackpenredpen5 жыл бұрын
It was requested by someone who just wanted that to be in the front. And the good thing is the cost is cheaper if it’s just one side print, too.
@davisnganga62665 жыл бұрын
Tricky one without knowing with substitution to use.
@achrafbaiz52872 жыл бұрын
W=U - note + sqrt2/u
@coolguy49895 жыл бұрын
Hey! you should check the answer by differentiating it! just to be sure you got it right
@mr.cabbage4428Ай бұрын
🗣️DIVIDEE BY YOU SQUARE🔥
@rarewc3uploader5 жыл бұрын
Hello blackpenredpen, May I ask, what is the limit of the expression "(W(x)/ln(x))^x" as x approaches a sideways 8 (infinity)?
@IbraheemMatanmi6 ай бұрын
the correct factor in the denorminator is {u-(1/u)}²-4
@IbraheemMatanmi6 ай бұрын
please kindly disregard my above comment i wasn't thinking very well thanks so much for sharing this video you're highly appreciated sir
@alse725 жыл бұрын
Check the answer via differentiation
@bopaliyaharshal23993 жыл бұрын
Mistake 14.04 -- minus ave
@hassansameh89604 жыл бұрын
Check by Differentiation😎😎😎
@mattwik74675 жыл бұрын
Love you ❤️❤️
@DebarghyaBasak_hi_every_one5 жыл бұрын
Hey, Blackpenredpen! I was trying to find the area under the graph of y=|[x^3]| from x=-2 to x=3. [.]- Greatest Integer Function and |.|-Modulus. Result involves a series of summation of the cube roots of first n integers. How do I go about solving this? Because the answer in my text book is given in the form of a numerical value. I really enjoy all of your integral videos, btw!
@JUANAMPIE5 жыл бұрын
Eso si es de gánster, muy buen video siempre es genial ver el nivel hard de estos ejercicios
@وريانهاد2 жыл бұрын
In 13:14 you make a little mistake . You should write tanh-1(v) not coth-1(v) !!! I'm right ???
@infamous9924 жыл бұрын
very helpful! thx a lot!
@absolutezero98745 жыл бұрын
Thank you for your videos. But did you see my question on integration of x^(x^2)? Is it integrable? Thank you
@blackpenredpen5 жыл бұрын
I don’t think it has a nice answer
@prollysine Жыл бұрын
Hi bprp, w=(u-(sqrt2/u)), the good thing is, the arctg() argument is not a typo because you wrote a + sign there?
@pinchus27145 жыл бұрын
Check answer via derivative.
@dork86565 жыл бұрын
I am confused on how hyperbolic integrals work. I instead use (1/2a)log((x + a)/(x - a)) on 1/(x^2 - a^2)
@nvapisces70115 жыл бұрын
Btw it is ln not log. I didnt learn hyperbolic functions yet but based on what i know about them, they have the same shape as ln. However, they have different domains. U just use them because they are more convenient instead of spending time doing more trig sub or partial fractions
@serbanhoban15173 жыл бұрын
@@nvapisces7011 You can say log if you want. Please read this first paragraph here on Wikipedia en.m.wikipedia.org/wiki/Natural_logarithm#:~:text=The%20natural%20logarithm%20of%20a,is%20implicit%2C%20simply%20log%20x.
@watsonjunior855 жыл бұрын
Check the answer
@hafeezullahrahoojo99725 жыл бұрын
Sir, have you uploaded the video of riemann sum proof??
@Simplement7245 жыл бұрын
Whats the best way to write the integral of tan^3(x) or are they no better writings of the answer?
@angelmendez-rivera3515 жыл бұрын
the chessmate tan(x)^3 = tan(x)·tan(x)^2 = tan(x)·[sec(x)^2 - 1]. Use linearity, and now you can consider the integrals of tan(x)sec(x)^2 and the integral of tan(x). The integral of tan(x) is given by ln|sec(x)| + C(x), where C(x) is an arbitrary piecewise step function with discontinuities whenever x = πn + π/2 for some integer n. The integral of tan(x)sec(x)^2 can be calculated by letting u = tan(x) => du = sec(x)^2 dx, which gives the integral of u with respect to u, which is equal to u^2/2 + C, or tan(x)^2/2 + C. Adding the integrals results in tan(x)^2/2 - ln|sec(x)| + C(x). Is there a better way to write the antiderivative? Other than switching tan(x)^2 for sec(x)^2, which is permitted because they differ by a constant, no, there is not a better way, as far as I am concerned.
@Simplement7245 жыл бұрын
@@angelmendez-rivera351 alright thank you i wrote it with sec instead of tan but i know some people said they wrote it with ln(cos) instead of ln(sec) wanted To know if it was any better or worse lol
@ernestschoenmakers81814 жыл бұрын
@@Simplement724 Well lnIcos(x)I = -lnIsec(x)I
@ayoobbhat91805 жыл бұрын
Becoz of u i fall in love in MATHS from KASHMIR
@O_Capivara5 жыл бұрын
You should do the diferenciation
@GreenMeansGOF5 жыл бұрын
Check the derivative!!!
@ppereztorres5 жыл бұрын
Please make a video checking this via derivative. Do it for Lars
@neilgerace3555 жыл бұрын
13:11 backwards writing For The Win
@Sg190th5 жыл бұрын
more substitutions than the pokemon move
@jrli59525 жыл бұрын
I paused the video To take my shoes off
@akshatahuja25235 жыл бұрын
Really I had done EXACTLY same
@mokouf35 жыл бұрын
Really similar to integrating sqrt(tan(x)), making algebraic twin again!
@jbitddpggp5 жыл бұрын
on the 4th line do we get inverse cot instead of natural logarithm (the 2nd integral)? maybe i am confused but the derivative of inverse cot is -1/(1+x^2) not 1/(1-x^2)
@nicolasgoubin5 жыл бұрын
Nice Lars ! Gg for having fought against that shitty cancer !!! This will turn into an old bad memory now ;)
@martindolak22935 жыл бұрын
It was great and understandable although I would recommend not using the inverse hyperbolic functions. Their usage is severely limited and they can be rewritten using natural logs which seems to be a better idea, especially considering that calc 2 students dont really use those things. But apart from that, it was a pleasant experience as always :)
@itsviv12 жыл бұрын
Logarithmic term as solution represents only the real part of the solution, whereas inverse hyperbolic function gives complete solution without neglecting imaginary terms. For the sake of completeness, I think it's better to write ans in inverse hyperbolic function.
@edwardhudson8152 жыл бұрын
@@itsviv1 dont absolute value signs make it better
@jaskiraatshah944518 күн бұрын
Ohhmmgggg please then differentiate the answer back to the question 😭 That would be lovely 😅😅😅
@sujalkoirala36754 жыл бұрын
How long should I try to solve an integral before giving up?
@mbarekouazragh99823 жыл бұрын
Error in minute 12 and 5 sec ! Taking out 1/sqrt(2 sqrt(2)-2) should be 1/(2 sqrt(2)-2) same for 1/(2 sqrt(2)+2)
@brucefrizzell42217 ай бұрын
I like Scott Joplin. Who is the musician ?
@mathswithpana Жыл бұрын
My bro I see a mistake for w substitution . Put - not +. Or maybe I can't see properly but I think you forgot to subtract not addition
@arghadipnandi50125 жыл бұрын
Sir where you put the main function of 'w' there will be a minus sign
@cecilhenry99085 жыл бұрын
Brutal!!!!!!!!
@chillforever61645 жыл бұрын
# Teacher of Chirayu Jain #!
@SartajKhan-jg3nz5 жыл бұрын
'It wasnt painful at all...' - BPRP
@edwardhudson8152 жыл бұрын
lost all hope bro used the formula for the derivate of the inverse hyperbolic cotangent
@zyadchoukri16545 жыл бұрын
Amazing
@user-fy2hp4 жыл бұрын
I think that you have a mistake, in the first part of the answer we have sqrt(1+tan(x))-sqrt(2÷(1+tan(x))) not a positive sign
@wayneosaur2 жыл бұрын
That is a hairy answer... Does it ever make sense to convert the integrand to a Taylor series and just integrate the resulting (infinite degree) polynomial?
@jakedanko72265 жыл бұрын
What could dx/dy look like or mean in general?
@bisakhbarman73445 жыл бұрын
What's the integral of (x^(1/(1+x)) - x^(1/(1-x)))dx?
@joluju23755 жыл бұрын
Why are the graphs of sqrt(1+tan(x)) and 2x^2/(x^4 - 2x^2 + 2) so different ?They have the same integral.
@ExTremeFlipper5 жыл бұрын
Joluju 😂 he did a u sub, thats why they are different
@elementsslothdragon32163 жыл бұрын
Quick question couldn’t you just substitute tan(x) for tan^2(θ). This would make this equation way more simple.
@edwardhudson8152 жыл бұрын
you get sectheta as the the main thing but the dx is the problem
@simonesora55735 жыл бұрын
Why we can't made this integral by part and then we can call 1+tanx=u with du=dx/cos^2(x) I don't see why it doesn't work, i mean I find it much easier to do, so it must be wrong😅...(in the integration by part i considered 1 equals g'(x), and I derived sqrt(1+tanx)...). Any help?
@angelmendez-rivera3515 жыл бұрын
Integration by parts does not work because you are forgetting the square root of the integrand. In this case, the function being differentiated is sqrt(1 + tan(x)), not 1 + tan(x). This yields a much different integrand than what you expected.
@simonesora55735 жыл бұрын
@@angelmendez-rivera351 I took that in mind, you get xsqrt(1+tanx) - 1/2 integral of (sec^2/sqrt(1+tanx))dx wich you can do by sustitution, ain't it ?
@simonesora55735 жыл бұрын
@@angelmendez-rivera351 Sorry, just found the error, i forgot an x in the integration by part, my mistake 🙌🏻
@sirajkhalil69244 жыл бұрын
Next: integral of cuberoot(1+tanx)
@robertherbert84195 жыл бұрын
what about its derivative ?
@erikkonstas5 жыл бұрын
Let's see... so, we have f(x) = sqrt(1 + tan(x)), therefore f'(x) = sec(x)^2 / (2 * sqrt(1 + tan(x))). :P
@MelonMediaMedia4 жыл бұрын
If only there was a tiny 2 next to the tan
@fedefubbi53495 жыл бұрын
can you do integral of sin^3x/(cos^3x+sin^3x) from 0 to pi/2? thanks sir in advance
@mislavplavac66415 жыл бұрын
The integral of f(x) from a to b is the same as the integral of f(a+b-x) from a to b. Could someone please correct me on this if it isn't always the case. But in this case it is so we'll let: I=integral from 0 to π/2 of sin³x/(sin³x+cos³x) and we'll also plugin 0+π/2-x into it so we get I=integral from 0 to π/2 of sin³(π/2-x) /(sin³(π/2-x) +cos³(π/2-x)). We notice that sin(π/2-x) =cos(x) and that cos(π/2-x) =sin(x) So we have sum the two I from which we get: 2I=integral from 0 to π/2 of (sin³x+cos³x) /(sin³x+cos³x) or the integral of 1dx So we get 2I = x [0 to π/2] or that 2I=π/2 in the end getting that the integral is π/4
@fedefubbi53495 жыл бұрын
@@mislavplavac6641 thank you!!
@angelmendez-rivera3515 жыл бұрын
Goran Plavac Yes.
@angelmendez-rivera3515 жыл бұрын
Fede Fubbi In general, for any arbitrary function f that is well defined on the real interval (0, 1), the integral from 0 to π/2 of f[sin(x)]/(f[sin(x)] + f[cos(x)]) with respect to x is equal to π/4. This uses the similar reasoning as the comments above. You can exploit the fact that sin(x) = cos(π/2 - x) and cos(x) = sin(π/2 - x) to prove this. In the special case of your integral, f(x) = x^3, but this could have been done with any other function with domain (0, 1). Even a discontinuous function would have done. There is also somewhat of similar trick with tan(x) and cot(x). For example, consider any function f : R -> R with the properties f(x)f(y) = f(xy), f(x^n) = f(x)^n, and f(1) = 1. Then the integral from 0 to π/2 of 1/(1 + f[tan(x)]) is the same as the integral from 0 to π/2 of 1/(1 + f[cot(x)]). Since cot(x), you can multiply numerator and denominator by f[tan(x)] to get f[tan(x)]/(f(1) + f[tan(x)]), and since f(1) = 1, f[tan(x)]/(1 + f[tan(x)]). Notice that this is identical to our original integral I, so if we add it to our original integral, then on the one hand, we have 2I, and on the other hand, we have the integral from 0 to π/2 of (1 + f[tan(x)])/(1 + f[tan(x)]) with respect to x, which is trivially equal to π/2. Thus, I = π/4.