Lesson47 Akaike Information Criterion

  Рет қаралды 90,508

Biometry Online Lessons

Biometry Online Lessons

Күн бұрын

With the possibilities opened up by linear and multiple forms of nonlinear regression, not to mention multiple regression, etc, how is the wise researcher supposed to choose between statistical models? It would be most helpful to have an objective criterion, wrote Hirogutu Akaike, back in ca 1974 in a paper entitled "A new look at the statistical model identification". Now cited more than 20,000 times, this approach is used in a wide array of fields to choose the best fit model. It penalizes overfitting while increasing information content. Here, with an example, I show how AIC is used.

Пікірлер: 1
@biometryonlinelessons598
@biometryonlinelessons598 9 жыл бұрын
Note: there is a mistake in the calculation of AIC; should be 42.17 for the first model and 37.86 for the second. Sorry!
Time Series Model Selection (AIC & BIC) : Time Series Talk
9:42
Lecture43 (Data2Decision) Comparing Models
17:19
Chris Mack
Рет қаралды 19 М.
كم بصير عمركم عام ٢٠٢٥😍 #shorts #hasanandnour
00:27
hasan and nour shorts
Рет қаралды 11 МЛН
Мама у нас строгая
00:20
VAVAN
Рет қаралды 12 МЛН
Probability is not Likelihood. Find out why!!!
5:01
StatQuest with Josh Starmer
Рет қаралды 1,1 МЛН
Probability vs. Likelihood ... MADE EASY!!!
7:31
Learn Statistics with Brian
Рет қаралды 38 М.
Model selection with AICs
31:05
Methods in Experimental Ecology I
Рет қаралды 27 М.
Evaluating model fit through AIC, DIC, WAIC and LOO-CV
11:20
Ben Lambert
Рет қаралды 22 М.
Regression: Crash Course Statistics #32
12:40
CrashCourse
Рет қаралды 728 М.
Model selection with AIC and AICc
13:21
TileStats
Рет қаралды 12 М.
Model selection:   Information criteria
20:14
Nathan Kutz
Рет қаралды 13 М.
Statistics 101: Multiple Regression, AIC, AICc, and BIC Basics
17:25
Maximum Likelihood Estimation ... MADE EASY!!!
9:12
Learn Statistics with Brian
Рет қаралды 26 М.