Малая теорема Ферма и теорема Эйлера | Ботай со мной

  Рет қаралды 101,785

Борис Трушин

Борис Трушин

Күн бұрын

Пікірлер: 185
@trushinbv
@trushinbv 6 жыл бұрын
#БотайСоМной #037 Малая теорема Ферма и теорема Эйлера Перед просмотром этого видео посмотрите ролик "Сравнение по модулю. Арифметика остатков": kzbin.info/www/bejne/onnKfpxul5dqd5Y Мини-курс про сравнение по модулю: foxford.ru/courses/1170/landing?ref=p308_yt& (Делимость, сравнения по модулю, теоремы Ферма и Эйлера, квадратичные вычеты) Заявки на следующие ролики: youtubetrushin.reformal.ru/
@altair2899
@altair2899 6 жыл бұрын
Прям вплотную подошли к теореме Лагранжа и определению группы. Когда-то такое может появиться на канале?
@trushinbv
@trushinbv 6 жыл бұрын
@@altair2899, может. Если будет достаточное количество интересующихся. Например, если это видео посмотрит тысяч 10 человек, или здесь -- youtubetrushin.reformal.ru/ -- этот запрос будет популярен.
@trushinbv
@trushinbv 5 жыл бұрын
@@powerofwisdom2336, да. Но, многие остановятся только на первом. А кому-то понять второе без первого не так просто. Но, вы правы, конечно.
@logofilm2321
@logofilm2321 5 жыл бұрын
Борис Трушин ,а вы сможете доказать большую теорему ферма???
@Shtokalo
@Shtokalo 5 жыл бұрын
@@trushinbv 13 к посмотрели
@amikalen1857
@amikalen1857 6 жыл бұрын
Жду видео больше чем свое день рождение
@karelalex
@karelalex 6 жыл бұрын
Когда так любишь математику, что забил на ЕГЭ по русскому.
@Ramatreeman
@Ramatreeman 6 жыл бұрын
Ура! Обожаю теорию чисел ^u^
@One-androgyne
@One-androgyne 5 жыл бұрын
Захватывающие объяснение! А вон оно как устроено все, а я голову ломал, спасибо за превосходное объяснение
@IgorGusev28
@IgorGusev28 4 жыл бұрын
Борис Викторович, привет! Спасибо за ролик! Теория сравнений Гаусса раньше не была мне знакома. Только не так давно (сын учился в ФТШ, есть такая физмат школа в Питере) я узнал про это. Очень красивая теория. Но, вот каким соображением я хотел бы поделиться с Вами: Доказывая Th Эйлера, Вы сформулировали, что функция Эйлера это количество натуральных чисел меньших некоторого натурального n и взаимно простых с ним, и далее (немного резануло слух) Вы сказали, т.е не имеющих общих делителей с n. Но, 1 имеет общий делитель с любым натуральным числом n, - собственно, единицу. Строго говоря, высказывание "количество натуральных чисел меньших некоторого натурального n и взаимно простых с ним" не эквивалентно высказыванию: "количество натуральных чисел меньших некоторого натурального n и не имеющих общих делителей с n". Просто, сформулировав, что взаимная простота и отсутствие общих делителей, - это одно и тоже, Вы затем (вместо фразы "взаимно просты c n") употребляете каждый раз фразу: "не имеют общих делителей c n". Тем самым, каждый раз, исключая единичку, из приведённой системы вычетов. Владимир Борисович, хочу искренне поблагодарить Вас за контент, который Вы производите, - очень много интересного, главное в понятном изложении, с крутыми фишками (например, про количество слов, которые можно составить из букв в словах ТРУШИН и МАТЕМАТИКА, с неожиданным затем переходом (через это) к понятию сочетаний из n по k, - круто! И у вас много в роликах таких "находок"). За теорию чисел отдельное спасибо! По вашему совету прошёл по ссылке, купил у Фоксорда курс Дмитрия Максимова (в записи), уже посмотрел где-то половину. Кстати, любопытно, что он там (на одном из занятий) показывает задачку, которая была и у Вас в видео "Задачи на доказательство делимости. Малая теорема Ферма": - Докажите, что для натурального n, целое число (2^n - 1)^n - 3 делится на (2^n - 3) Борис Викторович, а не подскажите из какого задачника это? С благодарностью, Игорь.
@dashqw
@dashqw 25 күн бұрын
Спасибо большое, в унике нормально не объясняют, очень выручили в подготовке к контрольной!
@cosyx
@cosyx 6 жыл бұрын
Спасибо за видео, очень информативно) Было бы интересно ещё послушать про теорию графов, связанные с этим олимпиадные задачи на знакомства и т.п.
@trushinbv
@trushinbv 6 жыл бұрын
Пишите сюда -- youtubetrushin.reformal.ru/ ;-)
@ОлегОлег-е9у7п
@ОлегОлег-е9у7п 6 жыл бұрын
Привет слушателям!!'' а так,,же владельцу этого видео. Что я здесь хочу вам сказать, и так сказать что у меня имеется решение и либо ответ для этой задачи n = 7, 4 ,3. Что ответ этой задачи настолько легкий мне хотелось тут чтобы это проверили, если вам интересна! эта информация; напишите мне ответ. Всем пока.
@antont.9249
@antont.9249 3 жыл бұрын
Просто и лаконично! Борис, спасибо!
@AntiChrist5179
@AntiChrist5179 Жыл бұрын
наконец то я понял эту теорему . лайк однозначно
@АхадАдыширинов
@АхадАдыширинов Жыл бұрын
Очень круто и красиво!) К сожалению, не все могут так доходчиво объяснять
@Torenu
@Torenu 3 жыл бұрын
Спасибо огромное, Борис, я готовлюсь к обучению в вузе и в нашей брошюре доказательство было какое то размытое, а тут всё сразу ясно
@dima_math
@dima_math 4 жыл бұрын
Отличное видео! Побольше бы таких!
@annaponomarova3472
@annaponomarova3472 4 жыл бұрын
Классный ролик, спасибо!
@nobrainnogain7255
@nobrainnogain7255 6 жыл бұрын
Борис Викторович, это видео просто оч классное, как и серия роликов про начала ТЧ, в школе теорию чисел с комбинаторикой обходят стороной, а у вас можно найти поистине удивительный контент, спасибо огромное, особенно про th. Эйлера в ТЧ, было очень интересно, но все же должен признать, что док-во МТФ которое вы показывали в задачке по комбинаторике более 'красивое', что ли. Сделайте пожалуйста видео о сумме квадратов первых n чисел в k-той степени, пожаааалуйста.
@humaniora_for_all
@humaniora_for_all 5 жыл бұрын
Спасибо! Мне кажется, такие темы очень нужны. Если ученик в школе не выходит за пределы школьной программмы, ему трудно будет в университете.
@arrrrrigomenjo
@arrrrrigomenjo 3 жыл бұрын
Спасибо! Я смог сдать экзамен!
@tmbo-ri3hk
@tmbo-ri3hk 4 жыл бұрын
Мегакруто!
@dziumka_chan
@dziumka_chan 3 жыл бұрын
Спасибо,очень интересно и доступно❤️
@skm6859
@skm6859 4 жыл бұрын
все замечательно )
@crazufithman2737
@crazufithman2737 5 жыл бұрын
Класс!
@A1xarT
@A1xarT 2 жыл бұрын
Доказательство малой теоремы суперкрасивое и запоминающееся
@ilyabikmeev
@ilyabikmeev 3 жыл бұрын
Здравствуйте Борис) Можно ли записать видео по китайской теореме об остатках?
@_Yes_.
@_Yes_. 2 жыл бұрын
Я борис с альтернативного аккаунта и пишу вам нет
@quadroninja2708
@quadroninja2708 Жыл бұрын
@@_Yes_. ты максимум кот Борис из рекламы кошачьего корма
@ПолиграфПолиграфыч-х5т
@ПолиграфПолиграфыч-х5т 6 жыл бұрын
Самый длинный час в моей жизни...
@whereispie
@whereispie 5 жыл бұрын
Опять лучший), спасибо
@mistrebrown7642
@mistrebrown7642 4 жыл бұрын
Борис, было бы здорово, если бы вы всегда для общих формул параллельно рассматривали пример на вполне конкретных значениях(как вы делаете это, начиная с 13:48). А так: всё круто, всё понятно, спасибо!
@НовокузнецкиеСомелье
@НовокузнецкиеСомелье 5 жыл бұрын
мтф через теорему лагранжа красиво доказывается
@alexeydmitriev1681
@alexeydmitriev1681 3 жыл бұрын
В определении phi(n) должно быть
@factualinfomation7807
@factualinfomation7807 Жыл бұрын
хорош мужик)
@valentinaleks4346
@valentinaleks4346 2 жыл бұрын
Все оч. оч. интересно. Для людей, которые не математики и не физики было бы интересно знать - как то или иное достижение в этих областях помогло в решении конкретных проблем. Хотя бы несколько конкретных примеров. Например тория относительности, почти понятно, помогла в работе Гланас.
@ДмитрийЧернов-ъ2ф
@ДмитрийЧернов-ъ2ф Жыл бұрын
Современная криптография в системах связи построена на базе теоремы Эйлера.
@vadimfilippovchit97
@vadimfilippovchit97 6 жыл бұрын
Информативно :^}
@dmanikhine
@dmanikhine 10 ай бұрын
Большое спасибо за видео с доказательствами теорем. Возможно ли обновить ссылку на "Мини-курс про сравнение по модулю:"? Или курса больше нет в продаже?
@maligosssaron3416
@maligosssaron3416 7 ай бұрын
Скорее курс по теории чисел)
@kuchma19
@kuchma19 6 жыл бұрын
Может поговорите про аффинные преобразования?
@ИринаБондарь-л6п
@ИринаБондарь-л6п 3 жыл бұрын
Спасибо!
@yury.malay300
@yury.malay300 Жыл бұрын
Из ac сравнимо с bv по модулю m не следует , что a сравнимо с b по модулю m , так как Zm кольцо у которого могут быть делители нуля , а значит закон сокращения не работает. Но если m- простое число , то как следует из интуитивного рассуждений ( ну или факта , что Zm -поле ) следует , что a сравнимо с b по модулю m.
@MonaLisa_667
@MonaLisa_667 4 жыл бұрын
супер
@somebody198
@somebody198 5 жыл бұрын
"Ни одно из чисел от 1 до (p-1) не делится p,потому что p - простое,а все числа меньше p". Борис Викторович,а зачем вы уточнили,что p простое,достаточно ведь того,что все числа меньше p,разве нет?
@trushinbv
@trushinbv 5 жыл бұрын
Да, здесь конкретно здесь это было не важно. Это скорее для того, чтобы из того, что ни a, и ни одно из них не делится на p^ следует, что ни одно из произведений на p не делится.
@trushinbv
@trushinbv 5 жыл бұрын
@@powerofwisdom2336, имеется в виду, что в самой фразе "Ни одно из чисел от 1 до (p-1) не делится p, потому что p -- простое, а все числа меньше p" часть про "потому что p -- простое," лишняя.
@jenik6210
@jenik6210 Жыл бұрын
Спасибо
@pavelsavenkov7827
@pavelsavenkov7827 2 жыл бұрын
@Борис Трушин, спасибо за очень ясные объяснения. Я заметил, что при доказательстве Теоремы Эйлера в 16:45 Вы пытаетесь доказать то, что изначально было взято, как исходное условие в 13:13: 13:13 Давайте выпишим все вот эти вот Фи от n чисел - все различные числа от 1 до (n - 1), которые не имеют с n общих делителей kzbin.info/www/bejne/eIusi31opcx7eMk 16:45 Давайте поймем, что они не только разные, а что они немогут иметь с n общих делителей kzbin.info/www/bejne/eIusi31opcx7eMk
@ЗемфирЗемфиров-з7б
@ЗемфирЗемфиров-з7б 6 жыл бұрын
про гипотезу Римана искал) и попал сюда
@СтаниславВ-о5ю
@СтаниславВ-о5ю 2 сағат бұрын
Них-я не понятно! Но очень интересно!
@Toropigeon
@Toropigeon 6 жыл бұрын
Вопрос не по теме. Когда, например, в условии написано, что число бесконечно мало, оно стремится к нулю или к минус бесконечности?
@trushinbv
@trushinbv 6 жыл бұрын
Число не может быть бесконечно мало. Бесконечно малой бывает последовательность, это означает, что она стремится к нулю. Это, кстати, будет следующим видео в #матан
@leramalakhova
@leramalakhova 5 жыл бұрын
Ни одного дизлайка)
@Даня-р3п2б
@Даня-р3п2б 5 жыл бұрын
Теперь только БТФ!!
@42-94
@42-94 4 жыл бұрын
Алгебраическая геома ВПЕРЕД
@Гольяновская
@Гольяновская 3 жыл бұрын
14:18 Очень пятёрка красивая)
@ЕгорРябцев-ь8м
@ЕгорРябцев-ь8м 6 жыл бұрын
Борис, доброе время суток. Не могу найти видео, в котором вы говорили что делать , если уровень в геометрии близок нулю ( вы рекомендовали какие - то задачники), которые помогают подготовиться к Геометрии в ЕГЭ. Подскажите ещё раз, спасибо.
@Axion245
@Axion245 6 жыл бұрын
kzbin.info/www/bejne/mIW2g4dteZ5qg9U
@kuchma19
@kuchma19 6 жыл бұрын
kzbin.info/www/bejne/mIW2g4dteZ5qg9U
@atabek3568
@atabek3568 2 жыл бұрын
2:32 Можно делить но не сокращать, когда делим на 2, делитель теперь будет не 4 а 2.
@kuchma19
@kuchma19 6 жыл бұрын
Еще про инверсию можно поговорить
@marshall366
@marshall366 3 жыл бұрын
4:42 там разве не равносильность в утверждении( Б. В. говорит, что следствие)?
@sergeiivanov5739
@sergeiivanov5739 6 жыл бұрын
Борис Викторович Трушин, вопрос не по теме. Всегда хотел узнать, а почему - речь идёт об экстремумах - мы наблюдаем минимум в случае положительности второй производной? То есть есть функция y = f(x) такая, что D(f) = R и E(f) = R. Мы нашли производную и решили уравнение f'(x) = 0, в результате чего нашли точку (допустим одну) x0. Затем нашли вторую производную и подставили x0 туда. И пусть получили, что f''(x0) > 0. Поэтому x0 - точка минимума. Почему так? С параболой все верно (там именно так и выходит, ибо вторая ее производная суть 2a).
@trushinbv
@trushinbv 6 жыл бұрын
Если вторая производная положительная, то первая производная возрастает. Но если она в самой точке равна нулю, значит до точки она отрицательна, а после -- положительна. Значит сама функция до точки убывает, а после -- возрастает.
@DonSPBLegogames
@DonSPBLegogames 4 жыл бұрын
Борис Викторович, здравствуйте Видео, конечно, довольно старое, но, надеюсь, вы увидите этот комментарий Только что вернулся с заваленого зачёта по мат логике Попался билет по свойствам сравнений (его написал без проблем), но вот на доп вопросе меня завалили Он звучал так: "При каком условии можно в выражении ac=bc(mod m) можно сократить c" Я ответил, как было в свойствах (и у вас в видео): "При НОД(m, c) =1" Мне сказали, что есть ещё один способ это сделать и послали на пересдачу, причём не объяснив что это за способ.. Пожалуйста, расскажите как всё же можно ещё сократить с в данном выражении, а то не хочется второй раз на том же валиться
@СергейСкородумов-ь7ъ
@СергейСкородумов-ь7ъ 4 жыл бұрын
Если a, b, m делятся на с, то всё можно сократить на с
@human3336
@human3336 4 жыл бұрын
Когда a=b
@matanmaster
@matanmaster 4 жыл бұрын
Интересно причем тут матлогика вообще?
@P34-h8q
@P34-h8q 4 жыл бұрын
БВ, а если и *с* и *а-б* делятся на m? Ведь нам можно сократить в случае: 6•4=2•4 (mod 4)
@mistrebrown7642
@mistrebrown7642 4 жыл бұрын
@Борис Трушин хотелось бы комментарий по этому поводу
@mistrebrown7642
@mistrebrown7642 4 жыл бұрын
Видимо, речь о всех случаях, когда c != m по модулю m
@mistrebrown7642
@mistrebrown7642 4 жыл бұрын
Хотя, нет, ерунда получается
@БейбарысЖеңісбек
@БейбарысЖеңісбек Жыл бұрын
7:52 называется "полная система вычетов", если хотите еще что то про это узнать (я сомневаюсь, что жюри всероса не знает это, кажется просто не хотел инфой перегружать) Так же МТФ можно доказать через бином ньютона (a+b)^p=a^p+b^p (mod p)
@trushinbv
@trushinbv Жыл бұрын
А как отсюда следует мтф?
@БейбарысЖеңісбек
@БейбарысЖеңісбек Жыл бұрын
@@trushinbv Похоже, никак.(да, можно это как фуры решать и доказать для 2 с помощью P(a;a), но вряд-ли получится для всех целых). Как то это у меня в памяти отпечаталась как док-во мтф. Это по идет следствие мтф. Я это доказывал сразу после того как разобрался с системой вычетов, и док-во мультипликативности функции эйлера. Наверное из за этого путаница
@БейбарысЖеңісбек
@БейбарысЖеңісбек 6 ай бұрын
​@@trushinbv А вот и нет, оказывается следует. Как то ехал на подготовку к олимпам в другой город перед заклом, и нам дали эту задачу на разминку. Там и доказал, что от сюда следует мтф Вот док-во: (a+b)^p=a^p+b^p mod p Предположение индукции: x^p=x mod p База: ставим a=b=1 и выводим базу для x=2 Тогда пусть x^p=x mod p (!) (x+1)^p=x+1 mod p А это верно, так как (x+1)^p=x^p+1^p=x^p+1=x+1 mod p
@trushinbv
@trushinbv 6 ай бұрын
@@БейбарысЖеңісбека, да. Симпатично )
@zlukich
@zlukich 4 жыл бұрын
Не совсем понял момент вначале, что на с можно сократить если m и с не имеют общих делителей кроме 1. А например 12 сравнимо с 8 по модулю 2, и 6 сравнимо с 4 по модулю 2. Сократили на двойку, а все равно верно, хотя НОД у двух чисел равен 2, как такое возможно?
@trushinbv
@trushinbv 4 жыл бұрын
А в чем противоречие? Я же не сказал, что только в этом случае можно сократить
@MaxPV1981
@MaxPV1981 3 жыл бұрын
@@trushinbv Вы именно так и сказали на 3:15 - "... Единственная возможность, когда можно сократить...". Проверяем: 27 - 9 делится на 6, сокращаем на 3, нод для 3 и 6 - 3, 9 - 3 тоже делится на 6. Тут я завис. И такие противоречия мешают воспринимать дальнейший материал, т.к. думаешь, что чего-то пропустил. Видимо, только мы с Арсением действительно пытались понять :)
@elliotalderson6609
@elliotalderson6609 3 жыл бұрын
@@MaxPV1981 Да, видимо только вы "пытались", а остальные поняли
@MaxPV1981
@MaxPV1981 3 жыл бұрын
@@elliotalderson6609 Ну раз поняли, то объясните противоречие.
@ywbc1217
@ywbc1217 3 жыл бұрын
Да, ОЧЕНЬ грубая неточность в видео но всем пофиг -- "
@neo7244
@neo7244 4 жыл бұрын
БВ, здравствуйте ! Видео конечно старое, но вдруг мое сообщение дойдет до вас. Посмотрел прошлое видео про сравнение модулей, все понял, решил много задач такого типа. Сейчас попробовал сделать тоже самое(с подходящими, конечно, числами), но ответ всегда разный. Попробовал пока что только с МТФ, в каждом случаи получается что остаток 1. Уже пару раз посмотрел видео, вроде все правила соблюдаю, в чем тогда проблема ? Заранее спасибо!
@neo7244
@neo7244 4 жыл бұрын
Дополню комментарий конкретным примером. Берем число 409 в 651 степени и пробуем находить остаток при делении на 23. По методу прошлого видео получается 2, проверил, все правильно. А если использовать МТФ, то ответ будет 1
@trushinbv
@trushinbv 4 жыл бұрын
А как вы МВФ используете?
@neo7244
@neo7244 4 жыл бұрын
@@trushinbv Так как числа взаимно простые, а 409 не делится на 23, следовательно можно использовать МТФ. В таком случаи, 409 в степени 22 эквивалентно 1. Отсюда можно сделать вывод что 409 в к степени эквивалентно 1 в к степени. И таким образом получается, что остаток от деления независимо от числа будет 1
@trushinbv
@trushinbv 4 жыл бұрын
@@neo7244 409^651 = (409^22)^29 * 409^13 = 1^29 * 18^13 = 324^6 * 18 = 2^6 * 18 = 64 * 18 = (-5) * (-5) = 25 = 2
@dovrenempire4682
@dovrenempire4682 5 жыл бұрын
Можно видео про формулу d^2=R^2-2Rr и расстояния между центрами окружности
@ВячеславПопов-ф8и
@ВячеславПопов-ф8и Жыл бұрын
Борис Викторович ,согласитесь ли Вы с возникшим предположение, что Ферма предложил малую и ВТФ
@ВячеславПопов-ф8и
@ВячеславПопов-ф8и Жыл бұрын
(далее) уловив удивительное свойство разложения (a+b)^ p=(a^p+b^p) - p K ?! Именно такое было началом доказательства ВТФ мною сначала для простых n=p , а потом составных нечётных и чётных степеней . На это потрачено 20 лет поиска и уложилось в 10 страниц
@ywbc1217
@ywbc1217 3 жыл бұрын
НА САМОМ ДЕЛЕ ПРАВИЛЬНОО ТАК: СОКРАШАТЬ ВСЕГДА МОЖНО НА МНОЖИТЕЛЬ, КОТОРЫЙ НЕ ИМЕЕТ ОБЩИЙ ДЕЛИТЕЛЬ С m НО СОКРАШАТЬ ТАКЖЕ ИНОГДА МОЖНО И НА МНОЖИТЕЛЬ, КОТОРЫЙ ИМЕЕТ ОБЩИЙ ДЕЛИТЕЛЬ С m ----------------------------- например: c = 5 m = 25 a = 3 b = 28 Борис 3 раза (ТРИ РАЗА !!!!!) в видео говорит, что сокращать можно, НО ТОЛЬКО при условии, что c и m не имеют общего делителя. Это большая неточность. Хотя всё остальное изложение (логика) БЛЕСТЯЩЕ !!! БОЛЬШОЕ СПАСИБО БОРИС! я в шоке ))))))))))))
@lol-rt5te
@lol-rt5te 3 жыл бұрын
Не понимаю что ты хотел этим доказать, потому что ac по прежнему не сравнимо с bc по модулю m. Да, есть свойство которое говорит, что можно сокращать, но в его условии сказано, что существует общий делитель a, b, m равный каково нибудь d. В таком случае, если сравнимы a и b по модулю m, то сравнимы a/d и b/d по модулю m/d
@ywbc1217
@ywbc1217 3 жыл бұрын
@@lol-rt5te посчитай ещё раз ac сравнимо с bc по модулю m и впредь, будь внимательней )
@Командор-ч2ю
@Командор-ч2ю 3 жыл бұрын
Тоже сразу подумал бред какой-то, если только взаимнопросты c и m
@lol-rt5te
@lol-rt5te 3 жыл бұрын
@@ywbc1217 Ну давай посчитаем. Напиши потом конкретное место где я ошибся. По определению числа сравнимы по модулю m тогда и только тогда, когда равны из остатки от деления на m. ( тут ошибки быть не может ) Ну тогда 3×5=15, остаток от деления 15 на 25 ( m= 25 ) равен 15. ( тут я тоже думаю, ошибки нет ). 28×3=84, остаток от деления 84 на 25 равен 9( проверил для тебя на калькуляторе, все верно). 9≠15, а значит числа 3×15 и 3×28 не сравнимы по модулю 25. Жду.
@Sasha-vn8dq
@Sasha-vn8dq 3 жыл бұрын
@@lol-rt5te 28 на 5 умножаем, а не на 3.
@Vvv-oi6jd
@Vvv-oi6jd Жыл бұрын
Здравствуйте, Борис. Поясните пож., как будет выглядеть в доказательстве МТФ факториал остатков r1...rp-1, при a
@trushinbv
@trushinbv Жыл бұрын
Не бывает отрицательных остатков )
@Vvv-oi6jd
@Vvv-oi6jd Жыл бұрын
@@trushinbv Если a=3, p=5. Из каких остатков сложится факториал? Спасибо, что нашли время ответить!
@Vvv-oi6jd
@Vvv-oi6jd Жыл бұрын
Я разобрался. У 3-х будет остаток 3. Все остатки 1,2,3,4.
@trushinbv
@trushinbv Жыл бұрын
@@Vvv-oi6jd у 3 остаток 3 у 6 остаток 1 у 9 остаток 4 у 12 остаток 2
@ИгорьГащук
@ИгорьГащук 2 ай бұрын
Сможет ли кто - нибудь доказать что 25**14 = 1(mod6) Функция Эйлера не имеет значений ф(n) = 14,26,34,38,62,74,.. почему? или 25**14 = 1(mod208)
@musicsrise
@musicsrise 2 ай бұрын
1) Если внимательно посмотреть на возведение в степень числа с точки зрения его делимости, то получим s = (ab + r)^n, для проверки s ÷ b, дальше можно разложить эту скобку по биному Ньютона и заметить, что ab^n будет делиться на b, и последующие n-1 слагаемых будут делиться на b, тк. содержат множитель b в некоторой степени, тогда на делимость сей суммы будет влиять только последний элемент суммы: r^n. Возвращаясь к твоей задаче, 25 сравнимо с 1 по модулю 6 => 25^k сравнимо с 1^k. (Эйлерова функция не призвана считать 1-ничные остатки чисел). Последний пример аналогичен: 25^2^7= 625^7, 625 сравнимо с 1 по модулю 208: 208*3 = 624 2) Можно посчитать, как ищется функция Эйлера для переменной x: x-1 - (все делители числа x, не включая x. Вернувшись к основной теореме арифметики, можно найти разложение числа на простые множители, и по теореме найти количество делителей: s = p1^a1 * p2^a2 *...* pn^an, тогда количество делителей: d = (a1 + 1)*(a2+1)*...*(an+1) (делители включая само число, а нам необходимы делители без изначального числа, так получим формулу Fe(x) = (x - 1) - (d(x)-1) = x - d(x) (все числа от 1, до x-1 минус делители числа, меньшие самого числа). Так вот у теоремы эйлера есть свойство мультипликативности: F(mn) = F(m) * F(n), у 14, 26, 34, 38 и тд. в разложении на какие-то делители нет таких чисел, чтобы произведение функции от 1-го делителя, на функцию от 2-го получалось именно это число (14, 26 ... и тд.) Ps. Если что - то непонятно, напиши. Про свойство мультипликативности, если честно, узнал, пока отвечал на коммент :)
@ИгорьГащук
@ИгорьГащук 2 ай бұрын
@@musicsrise Да знаю я и могу доказать, просто прикалываюсь, просто это совсем другая теорема и функция Эйлера здесь ни при чем 25**346 = 1(mod208) или 25**8 = 1(mod208) 21**25 = 1(mod20) И кто знает эту теорему?
@musicsrise
@musicsrise 2 ай бұрын
@@ИгорьГащук До этого был ролик Трушина об остатках и еще о признаках делимости - из той же оперы
@ИгорьГащук
@ИгорьГащук 2 ай бұрын
@@musicsrise Малая теорема Ферма здесь не причем 14 - число не простое и теорема Эйлера ф(n) не имеет значение 14 и Трушин здесь ни причем. А вот интересно, кто знает две формулы нахождения пифагоровы троек или только классику z = a^2 + b^2; x = b^2 - a^2; y = 2*a*b и a < b и разной четности, а если a и b - оба числа нечетны?
@ИгорьГащук
@ИгорьГащук 2 күн бұрын
@@musicsrise Все на много проще 25**14 = 1(mod 24) (Теорема о соседних числах (правда это я ее вывел и так назвал) => 25**14 = 1(mod6 = 24/4 = 6) То есть значения остатка не зависит от значения степени 25**123 = 1(mod 24) ; 25**67 = -1(mod 26) ; 34**234 = 1(mod 33)
@streetworkout3690
@streetworkout3690 6 жыл бұрын
Борис Трушин почему вы взяли только такие числа a 2a 3a 4a 5a 6a 7a .......(p-1)a , а не a 2a 3a 4a....(p-1)a pa и так далее?
@krauze8244
@krauze8244 6 жыл бұрын
Потому что ap будет иметь нулевой остаток от деления на p, а дальше остатки будут повторяться
@Toropigeon
@Toropigeon 6 жыл бұрын
А повторы уроков тоже в платном доступе?
@trushinbv
@trushinbv 6 жыл бұрын
Про какие уроки вы спрашиваете?
@Toropigeon
@Toropigeon 6 жыл бұрын
@@trushinbv те, что на фоксфорде
@trushinbv
@trushinbv 6 жыл бұрын
@@Toropigeon, да, но в записи они продаются в разы дешевле, чем стоили, когда курс шёл.
@kovrigini
@kovrigini 6 жыл бұрын
@@trushinbv Когда курс онлайн и можно задавать вопросы, тогда понятно в чем смысл. Если же курс оффлайн, не лучше ли взять хорошую книжку?
@amikalen1857
@amikalen1857 6 жыл бұрын
@@kovrigini кто тебе мешает? Бери. Но там то трушин рассказывает, а не какай-то умная книжечка
@ЖумагалиевАлишер-с5м
@ЖумагалиевАлишер-с5м 3 жыл бұрын
Для того что бы понять малую теорему Ферма , что нужно знать ?
@lol-rt5te
@lol-rt5te 3 жыл бұрын
Что такое функция Эйлера, отношение сравнения, простые числа, деление с остатком, кольца вычетов. Думаю этого достаточно
@kozanuch4405
@kozanuch4405 10 ай бұрын
остатки и делимость чисел... больше ничего, её можно понять начав смотреть с ролика #034. Я начал смотреть оттуда и кристально понимаю что из чего следует здесь.
@sergzelin3284
@sergzelin3284 2 жыл бұрын
Все-таки интересно, как строго доказать что сравнение по модулю m можно сократить на множитель, не имеющий общих делителей с m.
@trushinbv
@trushinbv 2 жыл бұрын
А это разве не строго? Если AB делится на C, и A взаимно просто C, то В делится на С. Это следует из основной теоремы арифметики
@sergzelin3284
@sergzelin3284 2 жыл бұрын
@@trushinbv Не услышал в этом место ролика слов про основную теорему арифметики. Услышал, что "не помогает"... :)
@almatytelecom1
@almatytelecom1 2 жыл бұрын
сокращать можно если сократить и модуль тоже!!!!
@trushinbv
@trushinbv 2 жыл бұрын
Если, конечно, модуль на это делится )
@uk267i
@uk267i 2 ай бұрын
опять он всех обхитрил ))
@sergeilyubski852
@sergeilyubski852 Жыл бұрын
Boris. Po povodu delimosti . Gde u menya dyrka ? c = 2, a = 12 , b = 4, m = 4. 2*12 mod 4 = 0. 2 *4 mod 4 = 0. Pravilno ? delim na 2. 12 mod 4 = 0, 4 mod 4 = 0. I 2*12 - 2*4 = 16 delitysa na 4. 12 - 4 = 8 delitsya na 4. T.e. c =2, m = 4 imeyutobstchiy delitel 2. Pravilno ? No pri etom a-b sami po sebe iznachalno prekrasno delyatsya na 4. Tak chto vashe utverzhdenie ne rabotaet. Vidino ne xvataet kakogo to usloviya.
@trushinbv
@trushinbv Жыл бұрын
Вы про какое утверждение?
@sergeilyubski852
@sergeilyubski852 Жыл бұрын
@@trushinbv ac=bc mod m . togda a = b mod n esli HOD ( c, m) = 1 . V moem trivialnom primere c = 2, m = 4 i ochevidno NOD( c, m) != 1 .
@trushinbv
@trushinbv Жыл бұрын
@@sergeilyubski852 мы доказали, что если НОД равен 1, то можно сокращать. Никто не утверждал, что что можно ТОЛЬКО если НОД равен 1
@sergeilyubski852
@sergeilyubski852 Жыл бұрын
@@trushinbv A ok, ponyal. U menya est estcho voprosy pro umnozheniyu. Sformuliruyu. Spasibo.
@caramba2233
@caramba2233 Жыл бұрын
@@trushinbv kzbin.info/www/bejne/eIusi31opcx7eMk, там вроде можно на их gcd поделить тоже
@ДмитрийЛарин-я1у
@ДмитрийЛарин-я1у 3 жыл бұрын
Было бы неплохо сразу приводить примеры в цифрах, а не "буквах", а то просто получается, что смотришь видио на другом языке, не улавливая мысль.
@ywbc1217
@ywbc1217 3 жыл бұрын
НА САМОМ ДЕЛЕ ПРАВИЛЬНОО ТАК: СОКРАШАТЬ ВСЕГДА МОЖНО НА МНОЖИТЕЛЬ, КОТОРЫЙ НЕ ИМЕЕТ ОБЩИЙ ДЕЛИТЕЛЬ С m НО СОКРАШАТЬ ТАКЖЕ ИНОГДА МОЖНО И НА МНОЖИТЕЛЬ, КОТОРЫЙ ИМЕЕТ ОБЩИЙ ДЕЛИТЕЛЬ С m ----------------------------- например: c = 5 m = 25 a = 3 b = 28 Борис 3 раза (ТРИ РАЗА !!!!!) в видео говорит, что сокращать можно, НО ТОЛЬКО при условии, что c и m не имеют общего делителя. Это большая неточность!
@lol-rt5te
@lol-rt5te 3 жыл бұрын
@@ywbc1217 не правильно
@ywbc1217
@ywbc1217 3 жыл бұрын
@@lol-rt5te правильно )
@MrPe4KiN96
@MrPe4KiN96 6 жыл бұрын
genius
@CallMeMrA
@CallMeMrA 4 жыл бұрын
20:48 а где код ?
@trushinbv
@trushinbv 4 жыл бұрын
какой? )
@CallMeMrA
@CallMeMrA 4 жыл бұрын
@@trushinbv пригласительный для фоксфорда
@trushinbv
@trushinbv 4 жыл бұрын
Араз Шафиев В описании кек видео есть ссылка
@Nutalant
@Nutalant 2 жыл бұрын
а что означает #037?
@trushinbv
@trushinbv 2 жыл бұрын
Порядковый номер выпуска
@_Yes_.
@_Yes_. 2 жыл бұрын
Лол лол
@epsilon.sw_
@epsilon.sw_ 9 ай бұрын
37 = 12 * 2 + 3 Где 12 = 3 * 4 А 3 + 4 = 7 Отсюда 7 Однако 12 * 2 Посему на втором месте после 3 Иначе 3 * 1 + 12 * 2 Посему 37 А почему в начале 0 Ну Трушин - робот А решеткой у него обозначается десятичная система Хотя ей обычно обозначают шеснадцатиричную Вот например число #037037 которое обычно сокращают до #037 обозначает зеленый цвет Доска у Трушина такого же цвета Что еще раз подтверждает, что Трушин - робот
@abdullatifbokov14
@abdullatifbokov14 2 жыл бұрын
А что вообще значит модуль м?
@trushinbv
@trushinbv 2 жыл бұрын
Начните с этого kzbin.info/www/bejne/onnKfpxul5dqd5Y
@Ал-тайДіЙ
@Ал-тайДіЙ 3 жыл бұрын
- это НИКАКОЕ! НЕ! "доказательство" охватывает только ОДНО! из условий , что "а" НЕ делится на "р" и НИКАК!!! НЕ! обращает НИКАКОГО! внимания на второе ГЛАВНОЕ!(для именно- ДОКАЗАТЕЛЬСТВА!) условие...
@Ал-тайДіЙ
@Ал-тайДіЙ 3 жыл бұрын
в этом "доказательстве" - НЕТ!!!! НИКАКОГО! "доказательства"!
@sergmetlev8559
@sergmetlev8559 8 ай бұрын
Ну и чушь...
@Алтынбекок
@Алтынбекок 7 ай бұрын
почему же?
@Zasrantschik
@Zasrantschik 6 ай бұрын
Почему?
@bogdan7798
@bogdan7798 4 жыл бұрын
Класс!
@jenik6210
@jenik6210 Жыл бұрын
Спасибо
黑的奸计得逞 #古风
00:24
Black and white double fury
Рет қаралды 30 МЛН
🕊️Valera🕊️
00:34
DO$HIK
Рет қаралды 19 МЛН
Малая теорема Ферма, теорема Эйлера (обобщенная теорема Ферма)
25:26
Теорема Ферма-Эйлера-Гаусса
20:54
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 24 М.
Функция Эйлера | Теория чисел
46:49
Элементарная Математика
Рет қаралды 8 М.
Сравнение по модулю (Теория и примеры)
1:10:14
Сергей Кузин
Рет қаралды 15 М.
Принципы шифрования, Малая теорема Ферма
1:16:55
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 144 М.
Как решили Великую теорему Ферма?
8:38
Макар Светлый
Рет қаралды 1,1 МЛН
黑的奸计得逞 #古风
00:24
Black and white double fury
Рет қаралды 30 МЛН